Skip to main content

Potential of Heterogeneity in Collective Behaviors: A Case Study on Heterogeneous Swarms

Part of the Lecture Notes in Computer Science book series (LNAI,volume 9387)

Abstract

Research in swarm robotics and collective behaviors is often focused on homogeneous swarms. However, heterogeneity in behaviors can be advantageous as we know, for example, from studies on social insects. Our objective is to study the hypothesis that there are potential advantages of heterogeneous swarms over homogeneous swarms in an aggregation scenario inspired by behaviors of juvenile honeybees. Even without task switching – that is, with predefined, static roles for certain swarm fractions – we find in our case study that heterogeneous swarms can outperform homogeneous swarms for a predetermined set of basic behaviors. We use methods of evolutionary computation to define behaviors imitating those found in honeybees (random walkers, wall followers, goal finders, immobile agents) and also to find well-adapted swarm fractions of different predetermined behaviors. Our results show that non-trivial distributions of behaviors give better aggregation performance.

Keywords

  • Random Walker
  • Multiagent System
  • Behavior Type
  • Collective Behavior
  • Swarm Intelligence

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25524-8_13
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25524-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adaptive Behavior 22(3), 189–206 (2014)

    CrossRef  Google Scholar 

  2. Arvin, F., Turgut, A.E., Yue, S.: Fuzzy-based aggregation with a mobile robot swarm. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 346–347. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  3. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  4. Berman, S., et al.: Optimized stochastic policies for task allocation in swarms of robots. Robotics, IEEE Transactions on 25(4), 927–937 (2009)

    CrossRef  Google Scholar 

  5. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm beeclust. Mathematical and Computer Modelling of Dynamical Systems 18(1), 87–100 (2012)

    CrossRef  MATH  Google Scholar 

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford Univ Press (1999)

    Google Scholar 

  7. Campbell, A., Wu, A.S.: Multi-agent role allocation: issues, approaches, and multiple perspectives. Autonomous Agents & Multi-Agent Systems 22, 317–355 (2011)

    CrossRef  Google Scholar 

  8. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005)

    CrossRef  Google Scholar 

  9. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)

    MathSciNet  CrossRef  Google Scholar 

  10. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Generation Computer Systems 16(9), 851–871 (2000)

    CrossRef  Google Scholar 

  11. Ferrante, E., Dúeñez Guzḿan, E., Turgut, A.E., Wenseleers, T.: Evolution of task partitioning in swarm robotics. In: et al., V.T. (ed.) Proceedings of the Workshop on Collective Behaviors and Social Dynamics of the European Conference on Artificial Life (ECAL 2013) (2013)

    Google Scholar 

  12. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adaptive Behavior 17(2), 109–133 (2009)

    CrossRef  Google Scholar 

  13. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance. Swarm Intelligence 7(2–3), 145–172 (2013)

    CrossRef  Google Scholar 

  14. Hamann, H., Karsai, I., Schmickl, T.: Time delay implies cost on task switching: A model to investigate the efficiency of task partitioning. Bulletin of Mathematical Biology 75(7), 1181–1206 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Hamann, H., Meyer, B., Schmickl, T., Crailsheim, K.: A model of symmetry breaking in collective decision-making. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 639–648. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  16. Hereford, J.M.: Analysis of BEECLUST swarm algorithm. In: Proc. of the IEEE Symposium on Swarm Intelligence (SIS 2011), pp. 192–198. IEEE (2011)

    Google Scholar 

  17. Hölldobler, B., Wilson, E.: The ants. Belknap Press of Harvard University (1990)

    Google Scholar 

  18. Kengyel, D., Schmickl, T., Hamann, H., Thenius, R., Crailsheim, K.: Embodiment of honeybee’s thermotaxis in a mobile robot swarm. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part II. LNCS, vol. 5778, pp. 69–76. Springer, Heidelberg (2011)

    Google Scholar 

  19. Kengyel, D., Thenius, R., Crailsheim, K., Schmickl, T.: Influence of a social gradient on a swarm of agents controlled by the beeclust algorithm. Advances in Artificial Life. In: Proceedings of the 12th European Conference on the Synthesis and Simulation of Living Systems, ECAL 2013 12, pp. 1041–1048 (2013)

    Google Scholar 

  20. Kengyel, D., Wotawa, F., Schmickl, T.: Towards swarm level programming: The role of different movement patterns in swarm systems. Swarm Intelligence (2014), submitted

    Google Scholar 

  21. Kernbach, S., Thenius, R., Kornienko, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior 17, 237–259 (2009)

    CrossRef  Google Scholar 

  22. Khaluf, Y., Birattari, M., Hamann, H.: A swarm robotics approach to task allocation under soft deadlines and negligible switching costs. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS, vol. 8575, pp. 270–279. Springer, Heidelberg (2014)

    Google Scholar 

  23. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 1(1), 4–25 (2006)

    CrossRef  Google Scholar 

  24. Lenaghan, S., Wang, Y., Xi, N., Fukuda, T., Tarn, T., Hamel, W., Zhang, M.: Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Transactions on Biomedical Engineering 60(3), 667–673 (2013)

    CrossRef  Google Scholar 

  25. Liu, X., Li, X., Shi, X., Huang, K., Liu, Y.: A multi-type ant colony optimization (maco) method for optimal land use allocation in large areas. International Journal of Geographical Information Science 26(7), 1325–1343 (2012)

    CrossRef  Google Scholar 

  26. Lorenz, K.: Vergleichende Verhaltensforschung: Grundlagen der Ethologie. Springer (1978)

    Google Scholar 

  27. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems 62(7), 966–975 (2014)

    CrossRef  Google Scholar 

  28. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    CrossRef  Google Scholar 

  29. Schmickl, T., Crailsheim, K.: TaskSelSim: a model of the self-organization of the division of labour in honeybees. Mathematical and Computer Modelling of Dynamical Systems 14, 101–125 (2008)

    CrossRef  MATH  Google Scholar 

  30. Schmickl, T., Hamann, H.: BEECLUST: a swarm algorithm derived from honeybees. In: Xiao, Y. (ed.) Bio-inspired Computing and Communication Networks. CRC Press, March 2011

    Google Scholar 

  31. Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S., Crailsheim, K.: Get in touch: Cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems 18(1), 133–155 (2008)

    CrossRef  Google Scholar 

  32. Seeley, T.D.: Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology 11, 287–293 (1982)

    CrossRef  Google Scholar 

  33. Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behavioral Ecology and Sociobiology 34, 51–62 (1994)

    CrossRef  Google Scholar 

  34. Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., Crailsheim, K.: Dynamics of collective decision making of honeybees in complex temperature fields. PLoS ONE 8(10), e76250 (2013)

    CrossRef  Google Scholar 

  35. Wilson, E.: The relation between caste ratios and division of labour in the ant genus Pheidole (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 16, 89–98 (1984)

    CrossRef  Google Scholar 

  36. Yong, C.H., et al.: Coevolution of role-based cooperation in multiagent systems. IEEE Transactions on Autonomous Mental Development 1(3), 170–186 (2009)

    CrossRef  Google Scholar 

  37. Zahadat, P., Crailsheim, K., Schmickl, T.: Social inhibition manages division of labour in artificial swarm systems. In: Lio, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) 12th European Conference on Artificial Life (ECAL 2013), pp. 609–616. MIT Press (2013)

    Google Scholar 

  38. Zahadat, P., Schmickl, T.: Wolfpack-inspired evolutionary algorithm and a reaction-diffusion-based controller are used for pattern formation. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 241–248. GECCO 2014, ACM, New York, USA (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Kengyel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kengyel, D., Hamann, H., Zahadat, P., Radspieler, G., Wotawa, F., Schmickl, T. (2015). Potential of Heterogeneity in Collective Behaviors: A Case Study on Heterogeneous Swarms. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds) PRIMA 2015: Principles and Practice of Multi-Agent Systems. PRIMA 2015. Lecture Notes in Computer Science(), vol 9387. Springer, Cham. https://doi.org/10.1007/978-3-319-25524-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25524-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25523-1

  • Online ISBN: 978-3-319-25524-8

  • eBook Packages: Computer ScienceComputer Science (R0)