Skip to main content

Verification of Asynchronous Mobile-Robots in Partially-Known Environments

  • Conference paper
  • First Online:
PRIMA 2015: Principles and Practice of Multi-Agent Systems (PRIMA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9387))

Abstract

This paper establishes a framework based on logic and automata theory in which to model and automatically verify that multiple mobile robots, with sensing abilities, moving asynchronously, correctly perform their tasks. The motivation is from practical scenarios in which the environment is not completely know to the robots, e.g., physical robots exploring a maze, or software agents exploring a hostile network. The framework shows how to express tasks in a logical language, and exhibits an algorithm solving the parameterised verification problem, where the graphs are treated as the parameter. The main assumption that yields decidability is that the robots take a bounded number of turns. We prove that dropping this assumption results in undecidability, even for robots with very limited (“local”) sensing abilities.

Benjamin Aminof and Florian Zuleger were supported by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund (WWTF) through grant ICT12-059. Aniello Murano was supported by FP7 EU project 600958-SHERPA. Sasha Rubin is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014)

    Google Scholar 

  3. Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn unlabeled directed graphs. Technical report, MIT (1995)

    Google Scholar 

  6. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS), pp. 155–160 (1967)

    Google Scholar 

  7. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Heidelberg (2014)

    Google Scholar 

  8. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. T. Algorithms (TALG) 4(4), 42 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Courcelle, B., Engelfriet, J.: Book: Graph structure and monadic second-order logic. a language-theoretic approach. Bull. EATCS 108, 179 (2012)

    MATH  Google Scholar 

  10. Das, S.: Mobile agents in distributed computing: Network exploration. Bull. EATCS 109, 54–69 (2013)

    Google Scholar 

  11. De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for generalized planning and agent composition. In: Fox, M., Poole, D., (eds.) AAAI, pp. 297–302 (2010)

    Google Scholar 

  12. Delzanno, G.: Parameterized verification and model checking for distributed broadcast protocols. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 1–16. Springer, Heidelberg (2014)

    Google Scholar 

  13. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51(1), 38–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flocchini, P., Prencipe, G., Santoro, N.: Computing by mobile robotic sensors. In: Nikoletseas, S., Rolim, J.D., (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks, EATCS, pp. 655–693. Springer (2011)

    Google Scholar 

  15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2012)

    Google Scholar 

  16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, p. 93. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoretical Computer Science 345, 331–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gasieniec, L., Radzik, T.: Memory efficient anonymous graph exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 14–29. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Hu, Y., De Giacomo, G.: Generalized planning: synthesizing plans that work for multiple environments. In: Walsh, T., (ed.) IJCAI, pp. 918–923. AAAI (2011)

    Google Scholar 

  20. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 108–127. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Kouvaros, P., Lomuscio, A.: Automatic verification of parameterised multi-agent systems. In: Gini, M.L., Shehory, O., Ito, T., Jonker, C.M., (eds.) AAMAS, pp. 861–868 (2013)

    Google Scholar 

  23. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of robot swarms. In: Bonet, B., Koenig, S., (eds.) AAAI, pp. 2081–2088 (2015)

    Google Scholar 

  24. An, H.-C., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In: Flocchini, P., Gkasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Kranakis, E., Krizanc, D., Rajsbaum, S.: Computing with mobile agents in distributed networks. In: Rajasekaran, S., Reif, J., (eds.) Handbook of Parallel Computing: Models, Algorithms, and Applications, CRC Computer and Information Science Series, pp. 8–1 – 8–20. Chapman Hall (2007)

    Google Scholar 

  26. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)

    Google Scholar 

  27. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014)

    Google Scholar 

  28. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall Inc (1967)

    Google Scholar 

  29. Murano, A., Sorrentino, L.: A game-based model for human-robots interaction. In: Workshop “From Objects to Agents” (WOA), CEUR Workshop Proceedings, vol. 1382, pp. 146–150. CEUR-WS.org (2015)

    Google Scholar 

  30. Rubin, S.: Parameterised verification of autonomous mobile-agents in static but unknown environments. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E., (eds.) AAMAS, pp. 199–208 (2015)

    Google Scholar 

  31. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Zuleger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aminof, B., Murano, A., Rubin, S., Zuleger, F. (2015). Verification of Asynchronous Mobile-Robots in Partially-Known Environments. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds) PRIMA 2015: Principles and Practice of Multi-Agent Systems. PRIMA 2015. Lecture Notes in Computer Science(), vol 9387. Springer, Cham. https://doi.org/10.1007/978-3-319-25524-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25524-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25523-1

  • Online ISBN: 978-3-319-25524-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics