Skip to main content

Numerical Simulation of PC-MRA

  • Chapter
  • First Online:
Understanding Phase Contrast MR Angiography

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 915 Accesses

Abstract

Quantitative evaluation of image processing algorithms for angiography images can only be approached using synthetic images, where the true geometry of vessels is known. This requires both simulation of flow and evolution of magnetization due to flow. The chapter begins with introduction of flow phantoms presented in a computational perspective. Since the main goal is to understand the evolution of magnetization in PC-MRA, and also because computational models for flow simulation of viscous fluids such as blood are well established, we have excluded their description from the contents of this chapter. The rest of this chapter mainly focuses on the two main methods used for estimation of flow induced magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1989) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York

    Google Scholar 

  2. Cattin HB, Collewet G (2005) Numerical implementation of the Bloch equations to simulate magnetization dynamics and imaging. J MRI 173

    Google Scholar 

  3. Segal A (2015) Finite element methods for the incompressible Navier–Stokes equations. TU Delft

    Google Scholar 

  4. Taylor CA, Draney MT (2004) Experimental and computational methods in cardio vascular fluid mechanics. Annu Rev Fluid Mech 36:197–231

    Article  MathSciNet  MATH  Google Scholar 

  5. Pashaei A, Fatouraee N (2009) An analytical phantom for the evaluation of medical flow imaging algorithms. Phys Med Biol 54:1791–1821

    Article  Google Scholar 

  6. Guo Z, Shi B, Wang N (2000) Lattice BGK model for Incompressible Navier-Stokes equation. J Comput Phys 165:288–306

    Article  MathSciNet  MATH  Google Scholar 

  7. He X, Luo L (1997) Lattice Boltzmann for the incompressible Navier-Stokes equation. J Stat Phys 88:3/4

    Google Scholar 

  8. Aspasia K (2012) Study of blood flow parameters in a phantom by magnetic resonance imaging. University of Patras, MRI School of Medicine

    Google Scholar 

  9. Sayah A, Mamourian AC (2012) Flow related artifacts in MR imaging and MR angiography of the central nervous system. Neurographics 2:154–162

    Article  Google Scholar 

  10. Klepaczko A, Szczypiński P, Dwojakowski G, Strzelecki M, Materka A (2014) Computer simulation of magnetic resonance angiography imaging: model description and validation. PlosOne 9

    Google Scholar 

  11. Mikhal J (2012) Modeling and simulation of flow in cerebral aneurysms. University of Twente, Enschede

    Google Scholar 

  12. Jurczuk K, Kretowski M, Bellanger JJ, Eliat PA, Jalmes HS, Wendling JB (2013) Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation. Magn Reson Imaging 31:1163–1173

    Article  Google Scholar 

  13. Jurczuk K, Kretowski M, Eliat PA, Jalmes HS, Wendling JB (2014) In silico modeling of magnetic resonance flow imaging in complex vascular networks. IEEE Trans Med Imaging 33:11

    Article  Google Scholar 

  14. Tritton DJ (1988) Physical fluid dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  15. Bittoun J, Taquin J, Sauzade M (1984) A computer algorithm for the simulation of any nuclear magnetic resonance (NMR) imaging method. Magn Reson Imaging 3:363–376

    Google Scholar 

  16. Sukop M, Thorne DT (2006) Lattice Boltzmann modeling: an introduction for geoscientists and engineers, 1st edn. Springer, Berlin

    Google Scholar 

  17. Koelman J (1991) A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. EPL (Europhysics Letters)

    Google Scholar 

  18. Bao YB, Meskas J (2011) Lattice Boltzmann method for fluid simulations. www.cims.nyu.edu/~billbao/report930.pdf

  19. Mazzeo MD (2009) Lattice-Boltzmann simulations of cerebral blood flow. University College London, London

    Google Scholar 

  20. Chen S, Martnez D, Mei R (1996) On boundary conditions in lattice Boltzmann methods. J Phys Fluids 8:2527–2536

    Article  MathSciNet  MATH  Google Scholar 

  21. He X, Luo L (1997) Lattice Boltzmann for the incompressible Navier-Stokes equation. J Stat Phys 88:3/4

    Google Scholar 

  22. Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Begum R, Basit MA (2008) Lattice Boltzmann method and its applications to fluid flow problems. Euro J Sci Res 22:216–231

    Google Scholar 

  24. Bhatnager P, Gross EP, Krook MK (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525

    Article  MATH  Google Scholar 

  25. Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Meth Fluids 39:325–342

    Article  MathSciNet  MATH  Google Scholar 

  26. http://staff.polito.it/pietro.asinari/publications/PhD/AsinariDoctoralThesis_Chap5of5.pdf//a

  27. Jurczuk K, Kretowski M, Eliat PA, Bellanger JJ, Jalmes HS, Wendling JB (2012) A new approach in combined modeling of MRI and blood flow: a preliminary study. IEEE, 978-1-4577-1858

    Google Scholar 

  28. Kwan RKS, Evans AC, Pike GB (1999) MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging 18:1085–1097

    Article  Google Scholar 

  29. Fortune S (1987) A sweep line algorithm for Voranoi diagrams Algorithmica 2:153–174

    MathSciNet  Google Scholar 

  30. Wu Ex X, Hui ES, Cheung JS (2007) TOF-MRA using multi-oblique-stack acquisition (MOSA). JMRI 26:432–436

    Article  Google Scholar 

  31. Sayah A (2012) Flow related artifacts in MR Imaging and MR angiography of the central nervous system. Neurographics 2:154–162

    Article  Google Scholar 

  32. Peterson S (2008) Simulation of phase contrast MRI measurements from numerical flow data. Department of Biomedical Engineering, Linkoping, Sweden

    Google Scholar 

  33. Awojoyogbe OB (2007) A quantum mechanical model of the Bloch NMR flow equations for electrodynamics in fluids at the molecular level. Phys Scr 75:788–794

    Article  MATH  Google Scholar 

  34. Awojoyogbe OB, Boubaker K (2009) A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using m-Boubaker polynomials. Curr Appl Phys 9:278–283

    Article  Google Scholar 

  35. Awojoyogbe OB, Salako KA (2005) Dynamic of the time dependent Bloch NMR equations for complex rF B1 field. International Centre for Theoretical Physics Publications

    Google Scholar 

  36. Awojoyogbe OB (2004) Analytical solution of the time dependent Bloch NMR equations: a translational mechanical approach. Phys A 339:437–460

    Article  Google Scholar 

  37. Cowan BP (1997) Nuclear magnetic resonance and relaxation, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  38. Michael DO, Bamidele AO, Adewale AO, Karem B (2013) Magnetic resonance imaging—derived flow parameters for the analysis of cardiovascular diseases and drug development. Magn Reson Insights 6:83–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Suresh Paul .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Suresh Paul, J., Gouri Raveendran, S. (2016). Numerical Simulation of PC-MRA. In: Understanding Phase Contrast MR Angiography. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-25483-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25483-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25481-4

  • Online ISBN: 978-3-319-25483-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics