Skip to main content

Network Coding over Satellite: From Theory to Design and Performance

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 154)

Abstract

The concept of network coding has greatly evolved since its inception. Theoretical and achievable performance have been obtained for a wide variety of networking assumptions and performance objectives. Even if powerful, such a broad applicability poses a challenge to a unified design approach over different communication networks and systems.

In this work, we propose a (non-reductionist) unified network coding design architectural framework where an ontology of abstraction domains is introduced rather than layer/system/network-specific assumptions and designs. The framework brings together network and system design and seems compatible with upcoming (more general) design frameworks such as software-defined networking, cognitive networking or network virtualization. We illustrate its applicability showing the case of network coding design over DVB-S2X/RCS.

Keywords

  • Network coding
  • Satellite communication system

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25479-1_24
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25479-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    Note that this distinction is simpler and well established in classic coding theory.

References

  1. Yeung, R.W., Zhang, Z.: Distributed source coding for satellite communications. IEEE Trans. Inf. Theory 45(4), 1111–1120 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inf. Theory 49(2), 371–381 (2003)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen, L.M.G.M.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theory 51(6), 1973–1982 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Trans. Netw. 11(5), 782–795 (2003)

    CrossRef  Google Scholar 

  6. Ho, T., Koetter, R., Médard M., Karger, D.R., Effros, M.: The benefits of coding over routing in a randomized setting. In: Proceedings of IEEE International Symposium on Information Theory (2003)

    Google Scholar 

  7. Cai, N., Yeung, R.W.: Network coding and error correction. In: Proceedings of IEEE Information Theory Workshop 2002, pp. 119–122, Bangalore, India, October 2002

    Google Scholar 

  8. Zhang, Z.: Linear network error correction codes in packet networks. IEEE Trans. Inf. Theory 54(1), 209–218 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Yang, S., Yeung, R.W., Ngai, C.K.: Refined coding bounds and code constructions for coherent network error correction. IEEE Trans. Inf. Theory 57(3), 1409–1424 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Dana, A.F., Gowaikar, R., Ravi Palanki, R., Hassibi, B., Effros, M.: Capacity of wireless erasure networks. IEEE Trans. Inf. Theory 52(3), 789–794 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Lun, D.S., Medard, M., Koetter, R., Effros, M.: On coding for reliable communication over packet networks. Phys. Commun. 1(1), 3–20 (2008)

    CrossRef  Google Scholar 

  12. Koetter, R., Kschischang, F.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Silva, D., Kschischang, F., Koetter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Zhang, S., Liew, S.C., Lam, P.P.: Hot Topic: Physical-layer Network Coding. In: ACM MobiCom, pp. 358–365, September 2006

    Google Scholar 

  15. Nazer, B., Gastpar, M.: Compute-and-forward: harnessing interference through structured codes. IEEE Trans. Inf. Theory 57(10), 6463–6486 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Nazer, B., Gastpar, M.: Reliable Physical Layer Network Coding. Proc. IEEE, Spec. Issue Netw. Coding 99(3), 438–460 (2011)

    Google Scholar 

  17. Vazquez-Castro, M.A.: Arithmetic geometry of compute and forward. In: Proceedings of IEEE Information Theory Workshop (2014)

    Google Scholar 

  18. Liew, S.C., Zhang, S., Lu, L.: Physical-layer network coding: tutorial, survey, and beyond. Phys. Commun. 6(1), 4–42 (2013)

    CrossRef  Google Scholar 

  19. Vieira, F., Shintre, S., Barros, J.: How feasible is network coding in current satellite systems ?. In: ASMS Conference and SPSC Workshop, pp. 31–37 (2010)

    Google Scholar 

  20. Vieira, F., Lucani, D., Alagha, N.: Load-aware soft-handovers for multibeam satellites: a network coding perspective. In: ASMS Conference and SPSC Workshop, pp. 189–196 (2012)

    Google Scholar 

  21. Alegre-Godoy, R., Alagha, N., Vazquez-Castro, M.A.: Offered capacity optimization mechanisms for multi-beam satellite systems In: IEEE ICC, pp. 3180–3184 (2012)

    Google Scholar 

  22. Vazquez-Castro, M.A.: Graph model and network coding gain of multibeam satellite communications. In: IEEE ICC, pp. 4293–4297 (2013)

    Google Scholar 

  23. Gupta, S., Vazquez-Castro, M.A.: Location-adaptive network-coded video transmission for improved quality-of-experience. In: 31st AIAA International Communications Satellite Systems Conference (ICSSC) (2013)

    Google Scholar 

  24. Gupta, S., Pimentel-Niño, M.A., Vazquez-Castro, M.A.: Joint network coded-cross layer optimized video streaming over relay satellite channel. In: 3rd International Conference on Wireless Communications and Mobile Computing (MIC-WCMC) (2013)

    Google Scholar 

  25. Cloud J., Leith D., Medard M.: Network Coded TCP (CTCP) Performance over Satellite Networks. In: International Conference on Advances in Satellite and Space Communications (SPACOMM), pp. 53–556 (2014)

    Google Scholar 

  26. Pimentel-Niño, M.A., Saxena P., Vazquez-Castro M.A.: QoE driven adaptive video with overlapping network coding for best effort erasure satellite links. In: 31st AIAA International Communications Satellite Systems Conference (ICSSC) (2013)

    Google Scholar 

  27. Saxena, P., Vázquez-Castro, M.A.: Network coding advantage over MDS codes for multimedia transmission via erasure satellite channels. In: The 5th International Conference on Personal Satellite Services (PSATS), June 2013

    Google Scholar 

  28. Saxena, P., Vázquez-Castro, M.A.: Link Layer Systematic Random Network Coding for DVB-S2X/RCS. In: IEEE Communications Letters, May 2015

    Google Scholar 

  29. Saxena, P., Vazquez-Castro, M.A.: Network coded multicast and multi-unicast over satellite. In: The 7th International Conference on Advances in Satellite and Space Communications (SPACOMM), April 2015

    Google Scholar 

  30. Muhammad, M., Giambene, G., De Cola, T.: Channel prediction and network coding for smart gateway diversity in terabit satellite networks. In: GLOBECOMM, pp. 3549–3554 (2014)

    Google Scholar 

  31. ETSI EN 302 307 V1.2.1, Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting (DVB-S2) (2009)

    Google Scholar 

  32. Kripke S.: Naming and Necessity, pp. 193–219. Harvard University Press, Cambridge, Chapter 10 (1979)

    Google Scholar 

  33. Saxena, P., Vazquez-Castro, M.A.: DARE: DoF-aided random encoding for network coding over lossy line networks. In: IEEE Communications Letters (2015)

    Google Scholar 

  34. Vazquez-Castro, M. A.: Subspace coding over Fq-linear erasure satellite channels. In: 7th International Conference on Wireless and Satellite Systems (2015). (Invited paper)

    Google Scholar 

  35. Pakzad, P., Fragouli, C., Shokrollahi, A.: Coding Schemes for line networks. In: IEEE ISIT, pp. 1853–1857 (2005)

    Google Scholar 

  36. Yang, S., Yeung, R., Coding for a network coded fountain. In: IEEE ISIT, pp. 2647–2651 (2011)

    Google Scholar 

  37. Huang, Q., Sun, K., Li, X., Wu, D.: Just FUN: a joint fountain coding and network coding approach to loss tolerant information spreading. In: ACM MobiHoc, pp. 83–92 (2014)

    Google Scholar 

  38. Lucani, D.E., Pedersen, M.V., Heide, J., Fitzek, F.H.P.: Fulcrum network codes: a code for fluid allocation of complexity. In: IEEE Journal on Selected Areas in Communications Submitted for Publication

    Google Scholar 

  39. IRTF: Network Coding Research Group (NWCRG). https://irtf.org/nwcrg

Download references

Acknowledgement

The authors acknowledge inter-disciplinary networking support by the COST Action IC 1104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vazquez-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Institute for Computer Sciences, Social informatics and Telecommunication Engineering

About this paper

Cite this paper

Vazquez-Castro, M.A., Saxena, P. (2015). Network Coding over Satellite: From Theory to Design and Performance. In: Pillai, P., Hu, Y., Otung, I., Giambene, G. (eds) Wireless and Satellite Systems. WiSATS 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-319-25479-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25479-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25478-4

  • Online ISBN: 978-3-319-25479-1

  • eBook Packages: Computer ScienceComputer Science (R0)