Network Coding over Satellite: From Theory to Design and Performance

  • M. A. Vazquez-CastroEmail author
  • Paresh Saxena
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 154)


The concept of network coding has greatly evolved since its inception. Theoretical and achievable performance have been obtained for a wide variety of networking assumptions and performance objectives. Even if powerful, such a broad applicability poses a challenge to a unified design approach over different communication networks and systems.

In this work, we propose a (non-reductionist) unified network coding design architectural framework where an ontology of abstraction domains is introduced rather than layer/system/network-specific assumptions and designs. The framework brings together network and system design and seems compatible with upcoming (more general) design frameworks such as software-defined networking, cognitive networking or network virtualization. We illustrate its applicability showing the case of network coding design over DVB-S2X/RCS.


Network coding Satellite communication system 



The authors acknowledge inter-disciplinary networking support by the COST Action IC 1104.


  1. 1.
    Yeung, R.W., Zhang, Z.: Distributed source coding for satellite communications. IEEE Trans. Inf. Theory 45(4), 1111–1120 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inf. Theory 49(2), 371–381 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen, L.M.G.M.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theory 51(6), 1973–1982 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Trans. Netw. 11(5), 782–795 (2003) CrossRefGoogle Scholar
  6. 6.
    Ho, T., Koetter, R., Médard M., Karger, D.R., Effros, M.: The benefits of coding over routing in a randomized setting. In: Proceedings of IEEE International Symposium on Information Theory (2003)Google Scholar
  7. 7.
    Cai, N., Yeung, R.W.: Network coding and error correction. In: Proceedings of IEEE Information Theory Workshop 2002, pp. 119–122, Bangalore, India, October 2002Google Scholar
  8. 8.
    Zhang, Z.: Linear network error correction codes in packet networks. IEEE Trans. Inf. Theory 54(1), 209–218 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yang, S., Yeung, R.W., Ngai, C.K.: Refined coding bounds and code constructions for coherent network error correction. IEEE Trans. Inf. Theory 57(3), 1409–1424 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dana, A.F., Gowaikar, R., Ravi Palanki, R., Hassibi, B., Effros, M.: Capacity of wireless erasure networks. IEEE Trans. Inf. Theory 52(3), 789–794 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lun, D.S., Medard, M., Koetter, R., Effros, M.: On coding for reliable communication over packet networks. Phys. Commun. 1(1), 3–20 (2008) CrossRefGoogle Scholar
  12. 12.
    Koetter, R., Kschischang, F.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Silva, D., Kschischang, F., Koetter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, S., Liew, S.C., Lam, P.P.: Hot Topic: Physical-layer Network Coding. In: ACM MobiCom, pp. 358–365, September 2006Google Scholar
  15. 15.
    Nazer, B., Gastpar, M.: Compute-and-forward: harnessing interference through structured codes. IEEE Trans. Inf. Theory 57(10), 6463–6486 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nazer, B., Gastpar, M.: Reliable Physical Layer Network Coding. Proc. IEEE, Spec. Issue Netw. Coding 99(3), 438–460 (2011) Google Scholar
  17. 17.
    Vazquez-Castro, M.A.: Arithmetic geometry of compute and forward. In: Proceedings of IEEE Information Theory Workshop (2014)Google Scholar
  18. 18.
    Liew, S.C., Zhang, S., Lu, L.: Physical-layer network coding: tutorial, survey, and beyond. Phys. Commun. 6(1), 4–42 (2013) CrossRefGoogle Scholar
  19. 19.
    Vieira, F., Shintre, S., Barros, J.: How feasible is network coding in current satellite systems ?. In: ASMS Conference and SPSC Workshop, pp. 31–37 (2010)Google Scholar
  20. 20.
    Vieira, F., Lucani, D., Alagha, N.: Load-aware soft-handovers for multibeam satellites: a network coding perspective. In: ASMS Conference and SPSC Workshop, pp. 189–196 (2012)Google Scholar
  21. 21.
    Alegre-Godoy, R., Alagha, N., Vazquez-Castro, M.A.: Offered capacity optimization mechanisms for multi-beam satellite systems In: IEEE ICC, pp. 3180–3184 (2012)Google Scholar
  22. 22.
    Vazquez-Castro, M.A.: Graph model and network coding gain of multibeam satellite communications. In: IEEE ICC, pp. 4293–4297 (2013)Google Scholar
  23. 23.
    Gupta, S., Vazquez-Castro, M.A.: Location-adaptive network-coded video transmission for improved quality-of-experience. In: 31st AIAA International Communications Satellite Systems Conference (ICSSC) (2013)Google Scholar
  24. 24.
    Gupta, S., Pimentel-Niño, M.A., Vazquez-Castro, M.A.: Joint network coded-cross layer optimized video streaming over relay satellite channel. In: 3rd International Conference on Wireless Communications and Mobile Computing (MIC-WCMC) (2013)Google Scholar
  25. 25.
    Cloud J., Leith D., Medard M.: Network Coded TCP (CTCP) Performance over Satellite Networks. In: International Conference on Advances in Satellite and Space Communications (SPACOMM), pp. 53–556 (2014)Google Scholar
  26. 26.
    Pimentel-Niño, M.A., Saxena P., Vazquez-Castro M.A.: QoE driven adaptive video with overlapping network coding for best effort erasure satellite links. In: 31st AIAA International Communications Satellite Systems Conference (ICSSC) (2013)Google Scholar
  27. 27.
    Saxena, P., Vázquez-Castro, M.A.: Network coding advantage over MDS codes for multimedia transmission via erasure satellite channels. In: The 5th International Conference on Personal Satellite Services (PSATS), June 2013Google Scholar
  28. 28.
    Saxena, P., Vázquez-Castro, M.A.: Link Layer Systematic Random Network Coding for DVB-S2X/RCS. In: IEEE Communications Letters, May 2015Google Scholar
  29. 29.
    Saxena, P., Vazquez-Castro, M.A.: Network coded multicast and multi-unicast over satellite. In: The 7th International Conference on Advances in Satellite and Space Communications (SPACOMM), April 2015Google Scholar
  30. 30.
    Muhammad, M., Giambene, G., De Cola, T.: Channel prediction and network coding for smart gateway diversity in terabit satellite networks. In: GLOBECOMM, pp. 3549–3554 (2014)Google Scholar
  31. 31.
    ETSI EN 302 307 V1.2.1, Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting (DVB-S2) (2009)Google Scholar
  32. 32.
    Kripke S.: Naming and Necessity, pp. 193–219. Harvard University Press, Cambridge, Chapter 10 (1979)Google Scholar
  33. 33.
    Saxena, P., Vazquez-Castro, M.A.: DARE: DoF-aided random encoding for network coding over lossy line networks. In: IEEE Communications Letters (2015)Google Scholar
  34. 34.
    Vazquez-Castro, M. A.: Subspace coding over Fq-linear erasure satellite channels. In: 7th International Conference on Wireless and Satellite Systems (2015). (Invited paper)Google Scholar
  35. 35.
    Pakzad, P., Fragouli, C., Shokrollahi, A.: Coding Schemes for line networks. In: IEEE ISIT, pp. 1853–1857 (2005)Google Scholar
  36. 36.
    Yang, S., Yeung, R., Coding for a network coded fountain. In: IEEE ISIT, pp. 2647–2651 (2011)Google Scholar
  37. 37.
    Huang, Q., Sun, K., Li, X., Wu, D.: Just FUN: a joint fountain coding and network coding approach to loss tolerant information spreading. In: ACM MobiHoc, pp. 83–92 (2014)Google Scholar
  38. 38.
    Lucani, D.E., Pedersen, M.V., Heide, J., Fitzek, F.H.P.: Fulcrum network codes: a code for fluid allocation of complexity. In: IEEE Journal on Selected Areas in Communications Submitted for PublicationGoogle Scholar
  39. 39.
    IRTF: Network Coding Research Group (NWCRG).

Copyright information

© Institute for Computer Sciences, Social informatics and Telecommunication Engineering 2015

Authors and Affiliations

  1. 1.School of EngineeringAutonomous University of BarcelonaBarcelonaSpain
  2. 2.AnsuR Solutions BarcelonaAdvanced Industry ParkBarcelonaSpain

Personalised recommendations