2.1 Ethics Approval
Research was ethically approved by National Research Evaluation Service (PRSC 23/07/2014).
2.2 Participants
Thirteen post-lingually deafened adult ACE users with Cochlear CP810 or CP900 series devices were recruited. Individuals with ossification or fibrosis were excluded and participants had to have a minimum of 12 months CI experience and primarily speak English. Median age was 67 years (range 36–85 years); the median length of CI use was 2 years (mean 4 years). Median duration of severe-to-profound deafness prior to surgery was 4 years (mean 2 years).
2.3 Study Design
A crossover single-blinded (participant unaware of mapping interventions) randomised control trial was conducted. Prior to starting each participant had their clinical map optimised by adjusting individual channel levels and they received a minimum of 1 month acclimatisation to this optimised map. The crossover study used an A-B-B-A/B-A-A-B design in which map A had indiscriminable electrodes deactivated and map B had an equal amount of discriminable electrodes deactivated.
2.4 Equipment
For the majority of the assessments the sound processor was placed inside an Otocube; a sound proof box designed for testing CI users to simulate listening over a loudspeaker in a sound treated room. Stimulus delivery and collection of responses was controlled using a line in from a laptop to the Otocube and sounds were presented over the Otocube loudspeaker positioned at 0 ° azimuth to the sound processer.
The direct stimulation pitch-ranking task was conducted using the Nucleus Implant Communicator (NIC) to send stimuli directly to individual electrodes.
2.5 Test Materials
CHEAR Auditory Perception Test (CAPT)
The CAPT was used because it is sensitive to spectral differences in hearing aid fitting algorithms (Marriage et al. 2011) and was known to be highly repeatable (inter-class correlation of 0.70 for test and re-test conditions; Vickers et al. 2013).
The CAPT is a four-alternative-forced-choice monosyllabic word-discrimination test spoken by a female British English speaker. It contained ten sets of four minimally-contrastive real words; eight sets with a contrastive consonant, e.g. fat, bat, cat, mat and two sets with a contrastive vowel, e.g. cat, cot, cut, cart. The participant selected from four pictures on a computer screen. The d’ score was calculated.
Stimuli were presented at 50 dBA in quiet; a level selected in pilot work because it resulted in performance falling on the slope of the psychometric function.
Children’s Coordinate Response Measure (CCRM)
The adaptive CCRM was based on the test developed by Bolia et al. (2000) and Brungart (2001). It was used because of low contextual cues, and ease of task.
Each stimulus sentence took the form:
‘Show the dog where the (colour) (number) is?’: e.g. ‘show the dog where the green three is?’
There were six colour options (blue, black, green, pink, red and white) and eight possible numbers (1–9, excluding 7). Stimuli were spoken by a British female speaker.
Two different maskers were used: 20-talker babble (created by modulating a speech-shaped noise with the amplitude envelope of male sentences) or speech-shaped noise (average long-term spectrum of the sentences). Random sections of the noise were selected on each trial.
The sentences were presented at 65 dBA and the noise adjusted adaptively (2-down/1-up) on the basis of whether or not both the colour and number were identified correctly. Initial step size was 9 dB, and decreased after two reversals to 3 dB. A further four reversals were run and averaged to obtain the speech reception threshold (SRT), but no test was longer than 26 trials.
Spectral-Temporally Modulated Ripple Task (SMRT)
The SMRT was used to assess spectral resolution. The SMRT test was chosen over other spectral ripple tasks, because it avoided potential confounds such as loudness and edge-frequency cues whilst still being sensitive to spectral resolution (Aronoff and Landsberger 2013).
Stimuli were 500 ms long with 100 ms ramps, nonharmonic tone complexes with 202 equal amplitude pure-tone frequency components, spaced every 1/33.3 octave from 100 to 6400 Hz. The amplitudes of the pure tones were modulated by a sine wave with a 33 % modulation depth. A three-interval, two-alternative forced choice task was used, with a reference stimulus of 20 ripples per octave (RPO) presented at 65 dBA. The target stimulus initially had 0.5 RPO and the number of ripples was modified using a 1-up/1-down adaptive procedure with a step size of 0.2 RPO. The test was completed after ten reversals, the last six reversals were averaged to calculate the threshold.
Pitch Ranking Approaches
The determination of discriminable and indiscriminable electrodes was based on two approaches, acoustic tones presented at the centre frequency of a filter via the System for Testing Auditory Responses (STAR; Saleh et al. 2013) and direct stimulation with biphasic pulses delivered using the NIC.
The pitch ranking task was the same for both approaches. A two-interval two-alternative forced choice paradigm was used. A single presentation consisted of two intervals in which the higher tone was randomly assigned to either the first or second interval, and the listener indicated which interval sounded higher in pitch. The 2 tones/pulses were presented sequentially with duration of 1000 ms and were 500 ms apart. Five pairs of tones/pulses were initially presented and responses recorded. If the participant got all five correct the pair was considered discriminable. If they scored less than five a further five presentations were given and scored. If the participant got eight out of ten presentations correct the pair passed. This was based on binomial significance at the p < 0.05 level (Skellam 1948). A run consisted of presentation of all possible electrode pairs presented either five or ten times, the duration of the test varied depending on accuracy of response and number of electrodes activated, but was typically 25 min long for the best performers with a full electrode array but up to 50 min for poorer performers. For the STAR delivery the stimuli were presented at 65 dBA and the NIC presentation was at 85 % of the upper comfort level (C level). Level roving was applied to each presentation and this was +/‑3 dB for STAR and +/‑3 clinical units (CU) for NIC.
The responses from the STAR and the NIC test were highly correlated (rho = 0.82, N = 13, p = 0.001) so the results from both tests were combined to create a composite score for each electrode by adding up the passes and fails across both tests thus increasing the calculation power. After determination of the “indiscriminable” electrode set, a “discriminable” electrode set of the same size was selected, using electrodes that were as near as possible to the indiscriminable set and had not failed on either task.
Fitting Procedure for De-activation
Each electrode in the entire A/B set was deactivated. The overall level of the experimental map was checked and if necessary all C levels adjusted to be approximately equally loud to the optimised clinical map. All other fitting parameters remained at the default settings (900 pulses-per-second, 25 μs pulse width, eight maxima and MP1 + 2 stimulation mode).