Procrustes Solution

  • Joseph L. Awange
  • Béla Paláncz


This chapter presents the minimization approach known as “Procrustes” which falls within the multidimensional scaling techniques discussed in Sect. 9.2.2. Procrustes analysis is the technique of matching one configuration into another in-order to produce a measure of match. In adjustment terms, the partial Procrustes problem is formulated as the least squares problem of transforming a given matrix \(\mathbf{A}\) into another matrix \(\mathbf{B}\) by an orthogonal transformation matrix \(\mathbf{T}\) such that the sum of squares of the residual matrix \(\mathbf{E} = \mathbf{A} -{\boldsymbol BT}\) is minimum.


Global Navigation Satellite System Global Navigation Satellite System Singular Value Decomposition Rotation Matrix Error Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 9.
    Albertz J, Kreiling W (1975) Photogrammetric guide. Herbert Wichmann Verlag, Karlsruhe, pp 58–60Google Scholar
  2. 19.
    Awange JL (2003) Partial Procrustes solution of the threedimensional orientation problem from GPS/LPS observations. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy – The Challenge of the 3rd Millennium. Springer, Heidelberg, pp 277–286CrossRefGoogle Scholar
  3. 45.
    Awange JL, Bae K-H, Claessens S (2008) Procrustean solution of the 9-parameter transformation problem. Earth Planets Space 60:529–537CrossRefGoogle Scholar
  4. 72.
    Beinat A, Crosilla F (2001) Generalised Procrustes analysis for size and shape 3-D object reconstructions. Optical 3-D measurement techniques, Wien 1–4 Oct 2001, V, pp 345–353Google Scholar
  5. 73.
    Beinat A, Crosilla F (2003) Generalised Procrustes algorithm for the conformal updating of a cadastral map. Zeitschrift für Geodasie, Geoinformation und Landmanagement 128:341–349Google Scholar
  6. 86.
    Bingham C, Chang T, Richards D (1992) Approximating the matrix fischer and Bingham distributions: applications to spherical regression and Procrustes analysis. J Multivar Anal 41:314–337CrossRefGoogle Scholar
  7. 93.
    Bojanczyk AW, Lutoborski A (2003) The Procrustes problem for orthogonal Kronecker products. SIAM J Sci Comput 25:148–163CrossRefGoogle Scholar
  8. 94.
    Borg I, Groenen P (1997) Modern multidimensional scaling. Springer, New YorkCrossRefGoogle Scholar
  9. 101.
    Brokken FB (1983) Orthogonal Procrustes rotation maximizing congruence. Psychometrika 48:343–352CrossRefGoogle Scholar
  10. 128.
    Chu MT, Driessel R (1990) The projected gradient method for least squares matrix approximations with spectral constraints. SIAM J Numer Anal 27(4):1050–1060CrossRefGoogle Scholar
  11. 129.
    Chu MT, Trendafilov NT (1998) Orthomax rotation problem. A differential equation approach. Behaviormetrika 25(1):13–23CrossRefGoogle Scholar
  12. 134.
    Cox TF, Cox MA (1994) Multidimensional scaling. St. Edmundsbury Press, St. EdmundsGoogle Scholar
  13. 139.
    Crosilla F (1983) A criterion matrix for a second order design of control networks. Bull Geod 57:226–239CrossRefGoogle Scholar
  14. 140.
    Crosilla F (1983) Procrustean transformation as a tool for the construction of a criterion matrix for control networks. Manuscripta Geodetica 8:343–370Google Scholar
  15. 141.
    Crosilla F, Beinat A (2003) Procrustes analysis and geodetic sciences. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy – the challenge of the 3rd millennium. Springer, Heidelberg, pp 277–286Google Scholar
  16. 142.
    Crosilla F (2003) Use of generalised Procrustes analysis for the photogrammetric block adjustement by independent models. J Photogramm Remote Sens 56:195–209CrossRefGoogle Scholar
  17. 155.
    Dryden IL (1998) General shape and registration analysis. In: Barndorff-Nielsen O, Kendall WS, van Lieshout MNM (eds) Stochastic geometry: likelihood and computation. Chapman and Hall, London, pp 333–364Google Scholar
  18. 190.
    Gelfand MS, Mironor AA, Perzner PA (1996) Gene recognition via spliced sequence alignment. Proc Natl Aead Sci USA 93:9061–9066CrossRefGoogle Scholar
  19. 192.
    Golub GH (1987) Least squares, singular values and matrix approximation. Aplikace matematiky 13:44–51Google Scholar
  20. 195.
    Goodall C (1991) Procrustes methods in statistical analysis of shape. J R Stat Soc B53:285–339Google Scholar
  21. 199.
    Gower JC (1975) Generalized procrustes analysis. Psychometrika 40(1):33–51CrossRefGoogle Scholar
  22. 210.
    Grafarend EW, Awange JL (2000) Determination of vertical deflections by GPS/LPS measurements. Zeitschrift für Vermessungswesen 125:279–288Google Scholar
  23. 211.
    Grafarend EW, Awange JL (2003) Nonlinear analysis of the three-dimensional datum transformation (conformal group \(\mathbb{C}_{7}(3)\). J Geod 77:66–76CrossRefGoogle Scholar
  24. 222.
    Grafarend EW, Schaffrin B (1993) Ausgleichungsrechnung in Linearen Modellen. B. I. Wissenschaftsverlag, MannheimGoogle Scholar
  25. 233.
    Green B (1952) The orthogonal approximation of an oblique stracture in factor analysis. Psychometrika 17:429–440CrossRefGoogle Scholar
  26. 239.
    Gulliksson M (1995) The partial Procrustes problem – a first look. Report UMINF-95.11, Department of Computing Science, Umea University, SwedenGoogle Scholar
  27. 240.
    Gulliksson M (1995) Algorithms for the partial Procrustes problem. Report 1995:27, Department of Industrial Technology, Mid Sweden University s-891 18, OrnskoldsvikGoogle Scholar
  28. 361.
    Mardia K (1978) Some properties of classical multidimensional scaling. Commun Stat Theory Methods A7(13):1233–1241CrossRefGoogle Scholar
  29. 362.
    Mathar R (1997) Multidimensionale Skalierung. B. G. Teubner Verlag, StuttgartGoogle Scholar
  30. 400.
    Paláncz B, Zaletnyik P, Awange LJ (2008) Extension of Procrustes algorithm for 3D affine coordinate transformation.
  31. 416.
    Preparata FP, Shamos MI (1985) Computational geometry. An introduction. Springer, New York/Berlin/Heidelberg/London/Paris/Tokyo/Hong Kong/Barcelona/BudapestCrossRefGoogle Scholar
  32. 459.
    Schönemann PH (1966) Generalized solution of the orthogonal Procrustes problem. Psychometrika 31:1–10CrossRefGoogle Scholar
  33. 460.
    Schönemann PH, Caroll RM (1970) Fitting one matrix to another under choice of a certain dilatation and rigid motion. Psychometrika 35(2):245–255CrossRefGoogle Scholar
  34. 481.
    Ten Berge JMF (1977) Orthogonal procrustes rotation for two or more matrices. Psychometrika 42:267–276CrossRefGoogle Scholar
  35. 503.
    Voigt C (1998) Prokrustes Transformationen. Geodätisches Institut, StuttgartGoogle Scholar
  36. 547.
    Zaletnyik P, Völgyesi L, Paláncz B (2008) Modelling local GPS/leveling geoid undulations using support vector machines. Period Polytech Civ Eng 52(1):39–43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations