Skip to main content

Solutions of Overdetermined Systems

  • Chapter
  • First Online:
Geospatial Algebraic Computations

Abstract

In geodesy and geoinformatics, field observations are normally collected with the aim of estimating parameters. Very frequently, one has to handle overdetermined systems of nonlinear equations. In such cases, there exist more equations than unknowns, therefore “the solution” of the system can be interpreted only in a certain error metric, i.e., least squares sense.

“Pauca des Matura” – a few but ripe – C. F. Gauss

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bähr HG (1988) A quadratic approach to the non-linear treatment of non-redundant observations. Manuscripta Geodaetica 13:191–197

    Google Scholar 

  2. Blaha G, Besette RP (1989) Nonlinear least squares method via an isomorphic geometrical setup. Bulletin Geodesique 63:115–138

    Article  Google Scholar 

  3. Brunner FK (1979) On the analysis of geodetic networks for the determination of the incremental strain tensor. Surv Rev 25:146–162

    Article  Google Scholar 

  4. Foulds LR (1984) Combinatorial optimization for undergraduates. Springer, New York

    Book  Google Scholar 

  5. Grafarend EW (1985) Variance-covariance component estimation; theoretical results and geodetic applications. Stat Decis 4(Supplement Issue No. 2) 4:407–441

    Google Scholar 

  6. Grafarend EW, Sanso F (1985) Optimization and design of geodetic networks. Springer, Berlin/Heidelberg/New York/Tokyo

    Book  Google Scholar 

  7. Grafarend EW, Schaffrin B (1974) Unbiased Freenet adjustment. Surv Rev 22:200–218

    Article  Google Scholar 

  8. Grafarend EW, Schaffrin B (1989) The geometry of nonlinear adjustment-the planar trisection problem-. In: Kejlso E, Poder K, Tscherning CC (eds) Festschrift to T. Krarup. Geodaetisk Institut, Copenhagen, 58:149–172

    Google Scholar 

  9. Grafarend EW, Schaffrin B (1991) The planar trisection problem and the impact of curvature on non-linear least-squares estimation. Comput Stat Data Anal 12:187–199

    Article  Google Scholar 

  10. Grafarend EW, Schaffrin B (1993) Ausgleichungsrechnung in Linearen Modellen. B. I. Wissenschaftsverlag, Mannheim

    Google Scholar 

  11. Gullikson M, Söderkvist I (1995) Surface fitting and parameter estimation with nonlinear least squares. Zeitschrift für Vermessungswesen 25:611–636

    Google Scholar 

  12. Guolin L (2000) Nonlinear curvature measures of strength and nonlinear diagnosis. Allgemein Vermessungs-Nachrichten 107:109–111

    Google Scholar 

  13. Hornoch AT (1950) Über die Zurückführung der Methode der kleinsten Quadrate auf das Prinzip des arithmetischen Mittels. Zeitschrift für Vermessungswesen 38:13–18

    Google Scholar 

  14. Jacobi CGI (1841) Deformatione et proprietatibus determinantum, Crelle’s Journal für die reine und angewandte Mathematik, Bd. 22

    Google Scholar 

  15. Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  16. Krarup T (1982) Nonlinear adjustment and curvature. In: Forty years of thought, Delft, pp 145–159

    Google Scholar 

  17. Kubik KK (1967) Iterative Methoden zur Lösunge des nichtlinearen Ausgleichungsproblemes. Zeitschrift für Vermessungswesen 91:145–159

    Google Scholar 

  18. Mautz R (2001) Zur Lösung nichtlinearer Ausgleichungsprobleme bei der Bestimmung von Frequenzen in Zeitreihen. DGK, Reihe C, Nr. 532

    Google Scholar 

  19. Meissl P (1982) Least squares adjustment. A modern approach, Mitteilungen der geodätischen Institut der Technischen Universität Craz, Folge 43. 17

    Google Scholar 

  20. Mittermayer E (1972) A generalization of least squares adjustment of free networks. Bull Geod 104:139–155

    Article  Google Scholar 

  21. Nicholson WK (1999) Introduction to abstract algebra, 2nd edn. Wiley, New York/Chichester/Weinheim/Brisbane/Singapore

    Google Scholar 

  22. Paláncz B, Lewis RH, Zaletnyik P, Awange JL (2008) Computational study of the 3D affine transformation, Part I. 3-point problem, Wolfram Library Archive, MathSource. http://library.wolfram.com/infocenter/MathSource/7090/. Accessed 27 Aug 2008

  23. Paláncz B, Zaletnyik P, Lewis RH, Awange JL (2008) Computational study of the 3D affine transformation, Part II. N-point problem, Wolfram Library Archive, MathSource. http://library.wolfram.com/infocenter/MathSource/7121/. Accessed 27 Aug 2008

  24. Perelmuter A (1979) Adjustment of free networks. Bull Geod 53:291–295

    Article  Google Scholar 

  25. Pope A (1982) Two approaches to non-linear least squares adjustments. Can Surv 28:663–669

    Google Scholar 

  26. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge/New York

    Google Scholar 

  27. Rao CR (1967) Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In: Procedure of the Fifth Barkeley Symposium, Barkeley

    Google Scholar 

  28. Rao CR, Kleffe J (1979) Variance and covariance components estimation and applications. Technical report No. 181, Ohio State University, Department of Statistics, Columbus

    Google Scholar 

  29. Saito T (1973) The non-linear least squares of condition equations. Bull Geod 110:367–395

    Article  Google Scholar 

  30. Schaffrin B (1983) Varianz-Kovarianz-Komponenten-Schätzung bei der Ausgleichung heterogener Wiederholungsmessungen, DGK, Reihe C, Heft Nr.282

    Google Scholar 

  31. Schek HJ, Maier P (1976) Nichtlineare Normalgleichungen zur Bestimmung der Unbekannten und deren Kovarianzmatrix. Zeitschrift für Vermessungswesen 101:140–159

    Google Scholar 

  32. Teunissen PJG (1990) Nonlinear least squares. Manuscripta Geodaetica 15:137–150

    Google Scholar 

  33. Teunissen PJG, Knickmeyer EH (1988) Non-linearity and least squares. CISM J ASCGC 42:321–330

    Google Scholar 

  34. Wellisch S (1910) Theorie und Praxis der Ausgleichsrechnung. Bd. II: Probleme der Ausgleichsrechnung

    Google Scholar 

  35. Werkmeister P (1920) Über die Genauigkeit trigonometrischer Punktbestimmungen. Zeitschrift für Vermessungswesen 49:401–412, 433–456

    Google Scholar 

  36. Zaletnyik P, Völgyesi L, Paláncz B (2008) Modelling local GPS/leveling geoid undulations using support vector machines. Period Polytech Civ Eng 52(1):39–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L., Paláncz, B. (2016). Solutions of Overdetermined Systems. In: Geospatial Algebraic Computations. Springer, Cham. https://doi.org/10.1007/978-3-319-25465-4_7

Download citation

Publish with us

Policies and ethics