Advertisement

Polynomial Resultants

  • Joseph L. Awange
  • Béla Paláncz
Chapter

Abstract

Besides Groebner basis approach discussed in Chap. 4, the other powerful algebraic tools for solving nonlinear systems of equations are the polynomial resultants approaches. While Groebner basis may require large storage capacity during its computations, polynomial resultants approaches presented herein offers remedy to users who may not be lucky to have computers with large storage capacities. This chapter presents polynomial resultants approaches starting from the resultants of two polynomials, known as the “Sylvester resultants”, to the resultants of more than two polynomials in several variables known as “multipolynomial resultants”. In normal matrix operations in linear algebra, one is often faced with the task of computing determinants. Their applications to least squares approach are well known.

Keywords

Computer Algebra System Polynomial System Common Zero Extraneous Factor Gravitation Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 25.
    Awange JL, Grafarend EW (2002) Sylvester resultant solution of planar ranging problem. Allgemeine Vermessungs-Nachrichten 108:143–146Google Scholar
  2. 31.
    Awange JL, Grafarend EW (2003) Multipolynomial resultant solution of the threedimensional resection problem (P4P). Bollettino di Geodesia e Science Affini 62:79–102Google Scholar
  3. 37.
    Awange JL, Fukuda Y, Takemoto S, Grafarend EW (2003) Resultants approach to the triple three-dimensional intersection problem. J Geodetic Soc Jpn 49:243–256Google Scholar
  4. 56.
    Bajaj C, Garity T, Waren J (1988) On the applications of multi-equational resultants. Technical report CSD-TR-826, Department of Computer Science, Purdue University, pp 1–22Google Scholar
  5. 83.
    Bernstein DS (2005) Matrix mathematics. Princeton University Press, Princeton, p 142Google Scholar
  6. 111.
    Canny JF (1988) The complexity of robot motion planning. ACM doctoral dissertation award, MITGoogle Scholar
  7. 112.
    Canny JF, Kaltofen E, Yagati L (1989) Solving systems of nonlinear polynomial equations faster. In: Proceedings of the International Symposium on Symbolic and Algebraic Computations ISSAC, Portland, 17–19 July, pp 121–128Google Scholar
  8. 113.
    Canny JF, Emiris IZ (2000) A subdivision based algorithm for the sparse resultant. J ACM 47(3):417–451CrossRefGoogle Scholar
  9. 114.
    Cattani E, Dickenstein A, Sturmfels B (1998) Residues and resultants. J Math Sci Univ Tokyo 5:119–148Google Scholar
  10. 115.
    Cayley A (1865) On the theory of elimination. Cambridge and Dublin Mathematical Journal, III, pp 210–270Google Scholar
  11. 131.
    Chtcherba AD, Kapur D (2004) Construction sylvester-type resultant matrices using the Dixon formulation. J Symb Comput 38:777–814CrossRefGoogle Scholar
  12. 132.
    Chtcherba AD, Kapur D, Minimair M (2005) Cayley-Dixon construction of resultants of multi-univariate composed polynomials. Technical report TR-CS-2005-15, April, Department of Computer Science, University of New MexicoGoogle Scholar
  13. 136.
    Cox D, Little J, O’Shea D (1998) Using algebraic geometry. Graduate text in mathematics, vol 185. Springer, New YorkGoogle Scholar
  14. 151.
    Dixon AL (1908) The elimination of three quantics in two independent variables. Proc Lond Math Soc Ser 2(6):468–478CrossRefGoogle Scholar
  15. 188.
    Gelfand IM, Kapranov MM, Zelevinsky AV (1990) Generalized Euler integrals and A-hypergeometry functions. Adv Math 84:255–271CrossRefGoogle Scholar
  16. 189.
    Gelfand IM, Kapranov MM, Zelevinsky AV (1994) Discriminants, resultants and multidimensional determinants. Birkhäuser, BostonCrossRefGoogle Scholar
  17. 237.
    Guckenheimer J, Myers M, Sturmfels B (1997) Computing Hopf birfucations. SIAM J Numer Anal 34:1–21CrossRefGoogle Scholar
  18. 298.
    Kapur D, Saxena T, Yang L (1994) Algebraic and geometric reasoning using Dixon resultants. In: ACM ISSAC 94, International Symposium on Symbolic and Algebraic Computation, Oxford, July 1994, pp 99–107CrossRefGoogle Scholar
  19. 313.
    Krishna S, Manocha D (1995) Numerical algorithms for evaluating one-dimensional algebraic sets. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation ISSAC, Montreal, 10–12 July, pp 59–67Google Scholar
  20. 328.
    Lewis RH (2002) Using the Dixon resultant on big problems. In: CBMS Conference, Texas A&M University. http://www.math.tamu.edu/conferences/cbms/abs.html. Accessed 27 Aug 2008
  21. 329.
    Lewis RH (2004) Exploiting symmetry in a polynomial system with the Dixon resultant. In: International Conference on Applications of Computer Algebra (ACA), Lamar University, Texas, July 2004Google Scholar
  22. 330.
    Lewis RH (2008) Heuristics to accelerate the Dixon resultant. Math Comput Simul 77(4):400–407CrossRefGoogle Scholar
  23. 343.
    Lohse P (1994) Ausgleichungsrechnung in nichtlinearen Modellen. DGK, Reihe C, Heft Nr. 429Google Scholar
  24. 345.
    Lyubeznik G (1995) Minimal resultant system. J Algebra 177:612–616CrossRefGoogle Scholar
  25. 346.
    Macaulay F (1902) On some formulae in elimination. Proc Lond Math Soc 3:3–27CrossRefGoogle Scholar
  26. 347.
    Macaulay F (1916) The algebraic theory of modular systems. Cambridge tracts in mathematics, vol 19. Cambridge University Press, CambridgeGoogle Scholar
  27. 348.
    Macaulay F (1921) Note on the resultant of a number of polynomials of the same degree. Proc Lond Math Soc 21:14–21Google Scholar
  28. 350.
    Manocha D (1992) Algebraic and numeric techniques for modeling and robotics. Ph.D. thesis, Computer Science Division, Department of Electrical Engineering and Computer Science, University of California, BerkeleyGoogle Scholar
  29. 353.
    Manocha D (1993) Efficient algorithms for multipolynomial resultant. Comput J 36:485–496CrossRefGoogle Scholar
  30. 356.
    Manocha D (1994) Solving systems of polynomial equations. IEEE Comput Graph Appl 14:46–55CrossRefGoogle Scholar
  31. 360.
    Manocha D, Canny J (1993) Multipolynomial resultant algorithms. Journal of Symbolic Computations 15: 99–122CrossRefGoogle Scholar
  32. 375.
    Morgan AP (1992) Polynomial continuation and its relationship to the symbolic reduction of polynomial systems. In: Symbolic and Numerical Computations for Artificial Intelligence. Academic, London/San Diego, pp 23–45Google Scholar
  33. 378.
    Nakos G, Williams R (2002) A fast algorithm implemented in Mathematica provides one-step elimination of a block of unknowns from a system of polynomial equations, Wolfram Library Archive, MathSource. http://library.wolfram.com/infocenter/MathSource/2597/. Accessed 27 Aug 2008
  34. 379.
    Nakos G, Williams R (1997) Elimination with the Dixon resultant. Math Educ Res 6:11–21Google Scholar
  35. 396.
    Paláncz B, Zaletnyik P, Awange JL, Grafarend EW (2008) Dixon resultant’s solution of systems of geodetic polynomial equations. J Geod 82(8):505–511CrossRefGoogle Scholar
  36. 431.
    Ritt JF (1950) Differential algebra. Colloquium publications, vol 18. AMS, New YorkGoogle Scholar
  37. 456.
    Salmon G (1876) Lessons introductory to modern higher algebra. Hodges, Foster and Co., DublinGoogle Scholar
  38. 462.
    Schram TG (1988) Properties of gravitational lens mapping. In: Kaiser N, Lasenby AN (eds) The post-recombination universe. Kluwer Academic, Dordrecht/Boston, pp 319–321CrossRefGoogle Scholar
  39. 476.
    Sturmfels B (1994) Multigraded resultant of Sylvester type. J Algebra 163:115–127CrossRefGoogle Scholar
  40. 478.
    Sturmfels B (1998) Introduction to resultants. Proc Symp Appl Math 53:25–39CrossRefGoogle Scholar
  41. 480.
    Sylvester JJ (1853) On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Strum’s functions and that of the greatest algebraic common measure. Philos Trans 143:407–548Google Scholar
  42. 491.
    Trott M (2005) Mathematica guide book for symbolic computation. Springer, New YorkGoogle Scholar
  43. 509.
    Van Der Waerden BL (1950) Modern algebra, 3rd edn. F. Ungar Publishing Co., New YorkGoogle Scholar
  44. 513.
    Weiss J (1993) Resultant methods for the inverse kinematics problem. In: Angeles J et al (eds) Computational kinematics. Kluwer Academic, Dordrecht/BostonGoogle Scholar
  45. 527.
    Wu W (1984) On the decision problem and mechanization of the theorem proving elementary geometry. Scientia Sinica 21:150–172Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations