Advertisement

Groebner Basis

  • Joseph L. Awange
  • Béla Paláncz
Chapter

Abstract

This chapter presents you the reader with one of the most powerful computer algebra tools, besides the polynomial resultants (discussed in the next chapter), for solving algebraic nonlinear systems of equations which you may encounter. The basic tools that you will require to develop your own algorithms for solving problems requiring closed form (exact) solutions are presented. This powerful tool is the “Gröbner basis” written in English as Groebner basis.

Keywords

Polynomial Equation Polynomial Ring Gauss Elimination Univariate Polynomial Common Divisor Greatest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 17.
    Awange JL (2002) Groebner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms-adjustment of nonlinear GPS/LPS observations. Ph.D. thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Germany. Technical reports, Report Nr. 2002 (1)Google Scholar
  2. 18.
    Awange JL (2002) Groebner basis solution of planar resection. Surv Rev 36:528–543CrossRefGoogle Scholar
  3. 20.
    Awange JL (2003) Buchberger algorithm applied to planar lateration and intersection problems. Surv Rev 37:319–329CrossRefGoogle Scholar
  4. 27.
    Awange JL, Grafarend EW (2002) Algebraic solution of GPS pseudo-ranging equations. J GPS Solut 4:20–32CrossRefGoogle Scholar
  5. 30.
    Awange JL, Grafarend EW (2003) Groebner basis solution of the three-dimensional resection problem (P4P). J Geod 77:327–337CrossRefGoogle Scholar
  6. 34.
    Awange JL, Fukuda Y, Takemoto S, Grafarend EW (2003) Direct polynomial approach to nonlinear distance (ranging) problems. Earth Planets Space 55:231–241CrossRefGoogle Scholar
  7. 36.
    Awange JL, Grafarend EW, Fukuda Y (2003) Closed form solution of the triple three-dimensional intersection problem. Zeitschrift für Geodaesie, Geoinfornation und Landmanagement 128:395–402Google Scholar
  8. 70.
    Becker T, Weispfenning V (1993) Gröbner bases. A computational approach to commutative algebra. Graduate text in mathematics, vol 141. Springer, New YorkGoogle Scholar
  9. 71.
    Becker T, Weispfenning V (1998) Gröbner bases. A computational approach to commutative algebra. Graduate text in mathematics, vol 141, 2nd edn. Springer, New YorkGoogle Scholar
  10. 103.
    Buchberger B (1965) An algorithm for finding a basis for the residue class ring of a zero dimensional polynomial ideal (German). Ph.D. thesis, Institute of Mathematics, University of Innsbruck (English Translation: J Symb Comput Spec Issue Logic Math Comput Sci Interact 41(3–4):475–511, 2006)Google Scholar
  11. 104.
    Buchberger B (1970) Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungsystems (An Algorithmic Criterion for the Solvability of Algebraic Systems of Equations). Aequationes Mathematicae 4/3:374–383 (English translation In: Buchberger B, Winkler F (eds) Groebner Bases and Applications, Proceedings of the International Conference “33 Years of Groebner Bases”, 1998, RISC, Austria, London mathematical society lecture note series, vol 251, Cambridge University Press, 1998, pp 535–545)Google Scholar
  12. 105.
    Buchberger B (1979) A criterion for detecting unnecessary reductions in the construction of Groebner bases. Proceedings of the 1979 European symposium on symbolic and algebraic computation. Springer lecture notes in computer science, vol 72, pp 3–21. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  13. 106.
    Buchberger B (2001) Gröbner bases. A short introduction for system theorists. In: Moreno-Diaz R et al (eds) EUROCAST 2001, Las Palmas de Gran Canaria. LNCS, vol 2178, pp 1–19Google Scholar
  14. 107.
    Buchberger B, Winkler F (1998) Groebner bases and applications. London mathematical society lecture note series 251. Cambridge University Press, CambridgeGoogle Scholar
  15. 133.
    Cox DA (1998) Introduction to Gröbner bases. Proc Symp Appl Math 53:1–24CrossRefGoogle Scholar
  16. 135.
    Cox D, Little J, O’Shea D (1997) Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Springer, New YorkGoogle Scholar
  17. 136.
    Cox D, Little J, O’Shea D (1998) Using algebraic geometry. Graduate text in mathematics, vol 185. Springer, New YorkGoogle Scholar
  18. 144.
    Davenport JH, Siret Y, Tournier E (1988) Computer algebra. Systems and algorithms for algebraic computation. Academic, St. Edmundsbury/LondonGoogle Scholar
  19. 283.
    Ireland K, Rosen M (1990) A classical introduction to modern number theory. Springer, New YorkCrossRefGoogle Scholar
  20. 323.
    Lauritzen N (2003) Concrete abstract algebra. From numbers to Gröbner bases. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  21. 339.
    Lidl R, Pilz G (1998) Applied abstract algebra, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  22. 381.
    Nicholson WK (1999) Introduction to abstract algebra, 2nd edn. Wiley, New York/Chichester/Weinheim/Brisbane/SingaporeGoogle Scholar
  23. 414.
    Pistone G, Wynn HP (1996) Generalized confounding with Gröbner bases. Biometrika 83:112–119CrossRefGoogle Scholar
  24. 417.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  25. 477.
    Sturmfels B (1996) Gröbner bases and convex polytopes. American Mathematical Society, ProvidenceGoogle Scholar
  26. 498.
    Vasconcelos WV (1998) Computational methods in commutative algebra and algebraic geometry. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  27. 524.
    Winkler F (1996) A polynomial algorithm in computer algebra. Springer, WienCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations