Skip to main content

Groebner Basis

  • Chapter
  • First Online:

Abstract

This chapter presents you the reader with one of the most powerful computer algebra tools, besides the polynomial resultants (discussed in the next chapter), for solving algebraic nonlinear systems of equations which you may encounter. The basic tools that you will require to develop your own algorithms for solving problems requiring closed form (exact) solutions are presented. This powerful tool is the “Gröbner basis” written in English as Groebner basis.

There are no good, general methods for solving systems of more than one nonlinear equation. Furthermore, it is not hard to see why (very likely) there never will be any good, general methods:

W. H. Press et al.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For the terms appearing in this definition, refer to Appendix A.1, Definition A.5 on p. 502

References

  1. Awange JL (2002) Groebner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms-adjustment of nonlinear GPS/LPS observations. Ph.D. thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Germany. Technical reports, Report Nr. 2002 (1)

    Google Scholar 

  2. Awange JL (2002) Groebner basis solution of planar resection. Surv Rev 36:528–543

    Article  Google Scholar 

  3. Awange JL (2003) Buchberger algorithm applied to planar lateration and intersection problems. Surv Rev 37:319–329

    Article  Google Scholar 

  4. Awange JL, Grafarend EW (2002) Algebraic solution of GPS pseudo-ranging equations. J GPS Solut 4:20–32

    Article  Google Scholar 

  5. Awange JL, Grafarend EW (2003) Groebner basis solution of the three-dimensional resection problem (P4P). J Geod 77:327–337

    Article  Google Scholar 

  6. Awange JL, Fukuda Y, Takemoto S, Grafarend EW (2003) Direct polynomial approach to nonlinear distance (ranging) problems. Earth Planets Space 55:231–241

    Article  Google Scholar 

  7. Awange JL, Grafarend EW, Fukuda Y (2003) Closed form solution of the triple three-dimensional intersection problem. Zeitschrift für Geodaesie, Geoinfornation und Landmanagement 128:395–402

    Google Scholar 

  8. Becker T, Weispfenning V (1993) Gröbner bases. A computational approach to commutative algebra. Graduate text in mathematics, vol 141. Springer, New York

    Google Scholar 

  9. Becker T, Weispfenning V (1998) Gröbner bases. A computational approach to commutative algebra. Graduate text in mathematics, vol 141, 2nd edn. Springer, New York

    Google Scholar 

  10. Buchberger B (1965) An algorithm for finding a basis for the residue class ring of a zero dimensional polynomial ideal (German). Ph.D. thesis, Institute of Mathematics, University of Innsbruck (English Translation: J Symb Comput Spec Issue Logic Math Comput Sci Interact 41(3–4):475–511, 2006)

    Google Scholar 

  11. Buchberger B (1970) Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungsystems (An Algorithmic Criterion for the Solvability of Algebraic Systems of Equations). Aequationes Mathematicae 4/3:374–383 (English translation In: Buchberger B, Winkler F (eds) Groebner Bases and Applications, Proceedings of the International Conference “33 Years of Groebner Bases”, 1998, RISC, Austria, London mathematical society lecture note series, vol 251, Cambridge University Press, 1998, pp 535–545)

    Google Scholar 

  12. Buchberger B (1979) A criterion for detecting unnecessary reductions in the construction of Groebner bases. Proceedings of the 1979 European symposium on symbolic and algebraic computation. Springer lecture notes in computer science, vol 72, pp 3–21. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  13. Buchberger B (2001) Gröbner bases. A short introduction for system theorists. In: Moreno-Diaz R et al (eds) EUROCAST 2001, Las Palmas de Gran Canaria. LNCS, vol 2178, pp 1–19

    Google Scholar 

  14. Buchberger B, Winkler F (1998) Groebner bases and applications. London mathematical society lecture note series 251. Cambridge University Press, Cambridge

    Google Scholar 

  15. Cox DA (1998) Introduction to Gröbner bases. Proc Symp Appl Math 53:1–24

    Article  Google Scholar 

  16. Cox D, Little J, O’Shea D (1997) Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Springer, New York

    Google Scholar 

  17. Cox D, Little J, O’Shea D (1998) Using algebraic geometry. Graduate text in mathematics, vol 185. Springer, New York

    Google Scholar 

  18. Davenport JH, Siret Y, Tournier E (1988) Computer algebra. Systems and algorithms for algebraic computation. Academic, St. Edmundsbury/London

    Google Scholar 

  19. Ireland K, Rosen M (1990) A classical introduction to modern number theory. Springer, New York

    Book  Google Scholar 

  20. Lauritzen N (2003) Concrete abstract algebra. From numbers to Gröbner bases. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  21. Lidl R, Pilz G (1998) Applied abstract algebra, 2nd edn. Springer, New York

    Book  Google Scholar 

  22. Nicholson WK (1999) Introduction to abstract algebra, 2nd edn. Wiley, New York/Chichester/Weinheim/Brisbane/Singapore

    Google Scholar 

  23. Pistone G, Wynn HP (1996) Generalized confounding with Gröbner bases. Biometrika 83:112–119

    Article  Google Scholar 

  24. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge/New York

    Google Scholar 

  25. Sturmfels B (1996) Gröbner bases and convex polytopes. American Mathematical Society, Providence

    Google Scholar 

  26. Vasconcelos WV (1998) Computational methods in commutative algebra and algebraic geometry. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  27. Winkler F (1996) A polynomial algorithm in computer algebra. Springer, Wien

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L., Paláncz, B. (2016). Groebner Basis. In: Geospatial Algebraic Computations. Springer, Cham. https://doi.org/10.1007/978-3-319-25465-4_4

Download citation

Publish with us

Policies and ethics