Advertisement

Datum Transformation Problems

  • Joseph L. Awange
  • Béla Paláncz
Chapter

Abstract

The 7-parameter datum transformation \(\mathbb{C}_{7}(3)\) problem involves the determination of seven parameters required to transform coordinates from one system to another. The transformation of coordinates is a computational procedure that maps one set of coordinates in a given system onto another

Keywords

Global Navigation Satellite System Global Navigation Satellite System Translation Parameter Symbolic Regression Transformation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    Abd-Elmotaal H, El-Tokhey M (1995) Effect of spherical approximation on datum transformation. Manuscripta Geodaetica 20:469–474Google Scholar
  2. 3.
    Abusali PAM, Schutz BE, Tapley BD (1994) Transformation between SLR/VLBI and WGS-84 frames. Bulletin Geodesique 69:61–72CrossRefGoogle Scholar
  3. 6.
    Aduol FWO, Gacoki TG (2002) Transformation between GPS coordinates and local plane UTM coordinates using the excel spreadsheet. Surv Rev 36:449–462CrossRefGoogle Scholar
  4. 9.
    Albertz J, Kreiling W (1975) Photogrammetric guide. Herbert Wichmann Verlag, Karlsruhe, pp 58–60Google Scholar
  5. 17.
    Awange JL (2002) Groebner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms-adjustment of nonlinear GPS/LPS observations. Ph.D. thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Germany. Technical reports, Report Nr. 2002 (1)Google Scholar
  6. 19.
    Awange JL (2003) Partial Procrustes solution of the threedimensional orientation problem from GPS/LPS observations. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy – The Challenge of the 3rd Millennium. Springer, Heidelberg, pp 277–286CrossRefGoogle Scholar
  7. 26.
    Awange JL, Grafarend EW (2002) Linearized least squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to 7-parameter datum transformation. Zeitschrift für Vermessungswessen 127:109–117Google Scholar
  8. 29.
    Awange JL, Grafarend EW (2003) Closed form solution of the overdetermined nonlinear 7-parameter datum transformation. Allgemeine Vermessungs Nachrichtern 109:130–148Google Scholar
  9. 40.
    Awange JL, Grafarend EW, Fukuda Y (2004) Exact solution of the nonlinear 7-parameter datum transformation by Groebner basis. Bollettino di Geodesia e Scienze Affini 63:117–127Google Scholar
  10. 41.
    Awange JL, Grafarend EW, Fukuda Y, Takemoto S (2005) The role of algebra in modern day geodesy. In: Sanso F (ed) A window on future in the future of geodesy. Springer, Heidelberg, pp 524–529CrossRefGoogle Scholar
  11. 45.
    Awange JL, Bae K-H, Claessens S (2008) Procrustean solution of the 9-parameter transformation problem. Earth Planets Space 60:529–537CrossRefGoogle Scholar
  12. 58.
    Baki IzH, Chen YQ (1999) Tailored datum transformation model for locally distributed data. J Surv Eng 125:25–35Google Scholar
  13. 64.
    Barsi A (2001) Performing coordinate transformation by artificial neural network. Allgemeine Vermessungs-Nachrichten 108:134–137Google Scholar
  14. 67.
    Bazlov YA, Galazin VF, Kaplan BL, Maksimov VG, Rogozin VP (1999) Propagating PZ 90 and WGS 94 transformation parameters. GPS Solut 3:13–16CrossRefGoogle Scholar
  15. 79.
    Beranek M (1997) Uberlegungen zur Normalverteilung und theoretische Analyse der 3- und 4-Parameter-Transformation. Allgemeine Vermessungs-Nachrichten 104:137–141Google Scholar
  16. 89.
    Birardi G (1996) The future global geodetic network and the transformation of local onto WGS coordinates. Bullettino di Geodesia e Scienze Affini 55:49–56Google Scholar
  17. 91.
    Blum L, Cucker F, Shub M, Smale S (1998) Complexity and real computation. Springer, New YorkCrossRefGoogle Scholar
  18. 161.
    Featherstone WE (1997) A comparison of existing co-ordinate transformation models and parameters in Australia. Cartography 26:13–25CrossRefGoogle Scholar
  19. 163.
    Featherstone W (2000) Refinement of gravimetric geoid using GPS and levelling data. J Surv Eng 126(2):27–56CrossRefGoogle Scholar
  20. 178.
    Francesco D, Mathien PP, Senechal D (1997) Conformal field theory. Springer, Heidelberg/New YorkCrossRefGoogle Scholar
  21. 180.
    Fröhlich H, Bröker G (2003) Trafox version 2.1. 3d-kartesische Helmert-Transformation. http://www.koordinatentransformation.de/data/trafox.pdf. Accessed 27 Aug 2008
  22. 193.
    Golub GH, Pereyra V (1973) The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J Numer Anal 10:413–432CrossRefGoogle Scholar
  23. 210.
    Grafarend EW, Awange JL (2000) Determination of vertical deflections by GPS/LPS measurements. Zeitschrift für Vermessungswesen 125:279–288Google Scholar
  24. 211.
    Grafarend EW, Awange JL (2003) Nonlinear analysis of the three-dimensional datum transformation (conformal group \(\mathbb{C}_{7}(3)\). J Geod 77:66–76CrossRefGoogle Scholar
  25. 216.
    Grafarend EW, Okeke F (1998) Transformation of conformal coordinates of type Mercator from global datum (WGS 84) to local datum (regional, national). Marine Geod 21:169–180CrossRefGoogle Scholar
  26. 226.
    Grafarend EW, Syffus R (1997) Strip transformation of conformal coordinates of type Gauss-Kruger and UTM. Allgemeine Vermessungs-Nachrichten 104:184–190Google Scholar
  27. 228.
    Grafarend EW, Hendricks A, Gilbert A (2000) Transformation of conformal coordinates of type Gauss-Kruger or UTM from a local datum (Regional, National, European) to a global datum (WGS 84, ITRF 96). Allgemeine Vermessungs-Nachrichten 107:218–222Google Scholar
  28. 230.
    Grafarend EW, Knickmeyer EH, Schaffrin B (1982) Geodätische Datumtransformationen. Zeitschrift für Vermessungswesen 107:15–25Google Scholar
  29. 231.
    Grafarend EW, Krumm F, Okeke F (1995) Curvilinear geodetic datum transformation. Zeitschrift für Vermessungswesen 120:334–350Google Scholar
  30. 232.
    Grafarend EW, Syffus R, You RJ (1995) Projective heights in geometry and gravity space. Allgemeine Vermessungs-Nachrichten 102:382–402Google Scholar
  31. 244.
    Guo J, Jin F (2001) A new model of digitizing coordinate transformation and its nonlinear solution. Allgemeine Vermessungs-Nachrichten 108:311–317Google Scholar
  32. 261.
    Harvey BR (1986) Transformation of 3D coordinates. Aust Surv 33:105–125CrossRefGoogle Scholar
  33. 297.
    Kampmann G (1996) New adjustment techniques for the determination of transformation parameters for cadastral and engineering purposes. Geomatica 50:27–34Google Scholar
  34. 298.
    Kapur D, Saxena T, Yang L (1994) Algebraic and geometric reasoning using Dixon resultants. In: ACM ISSAC 94, International Symposium on Symbolic and Algebraic Computation, Oxford, July 1994, pp 99–107CrossRefGoogle Scholar
  35. 300.
    Kinneen RW, Featherstone WE (2004) Empirical evaluation of published transformation parameters from the Australian geodetic datums (AGD66 and AGD84) to the geocentric datum of Australia (GDA94). J Spat Sci 49(2):1–31CrossRefGoogle Scholar
  36. 304.
    Koch KR (2001) Bermekung zu der Veröffentlichung “Zur Bestimmung eindeutiger transformationparameter”. Zeitschrift für Vermessungswesen 126:297Google Scholar
  37. 307.
    Koch KR, Fröhlich H, Bröker G (2000) Transformation räumlicher variabler Koordinaten. Allgemeine Vermessungs-Nachrichten 107:293–295Google Scholar
  38. 310.
    Krarup T (1979) S transformation or how to live without the generalized inverse – almost. Geodetisk Institut, CharlottenlundGoogle Scholar
  39. 326.
    Lenzmann E, Lenzmann L (2001) Zur Bestimmung eindeutiger transformationparameter. Zeitschrift für Vermessungswesen 126:138–142Google Scholar
  40. 327.
    Lenzmann E, Lenzmann L (2001) Erwiderung auf die Anmerkung von Jörg Reinking und die Bermekungen von Karl-Rudolf Koch zu unserem Meitrag “Zur Bestimmung eindeutiger transformationparameter”. Zeitschrift für Vermessungswesen 126:298–299Google Scholar
  41. 328.
    Lewis RH (2002) Using the Dixon resultant on big problems. In: CBMS Conference, Texas A&M University. http://www.math.tamu.edu/conferences/cbms/abs.html. Accessed 27 Aug 2008
  42. 330.
    Lewis RH (2008) Heuristics to accelerate the Dixon resultant. Math Comput Simul 77(4):400–407CrossRefGoogle Scholar
  43. 363.
    Mathes A (2002) EasyTrans Pro-Edition, Professionelle Koordinatentransformation für Navigation, Vermessung und GIS, ISBN 978-3-87907-367-2, CD-ROM mit BenutzerhandbuchGoogle Scholar
  44. 378.
    Nakos G, Williams R (2002) A fast algorithm implemented in Mathematica provides one-step elimination of a block of unknowns from a system of polynomial equations, Wolfram Library Archive, MathSource. http://library.wolfram.com/infocenter/MathSource/2597/. Accessed 27 Aug 2008
  45. 379.
    Nakos G, Williams R (1997) Elimination with the Dixon resultant. Math Educ Res 6:11–21Google Scholar
  46. 382.
    Newsome G, Harvey BR (2003) GPS coordinate transformation parameters for Jamaica. Surv Rev 37:218–233CrossRefGoogle Scholar
  47. 385.
    Nitschke M, Knickmeyer EH (2000) Rotation parameters – a survey of techniques. J Surv Eng 126:83–105CrossRefGoogle Scholar
  48. 392.
    Okeke FI (1998) The curvilinear datum transformation model, DGK, Reihe C, Heft Nr. 481Google Scholar
  49. 396.
    Paláncz B, Zaletnyik P, Awange JL, Grafarend EW (2008) Dixon resultant’s solution of systems of geodetic polynomial equations. J Geod 82(8):505–511Google Scholar
  50. 399.
    Paláncz B, Zaletnyik P, Lewis RH, Awange JL (2008) Computational study of the 3D affine transformation, Part II. N-point problem, Wolfram Library Archive, MathSource. http://library.wolfram.com/infocenter/MathSource/7121/. Accessed 27 Aug 2008
  51. 402.
    Paláncz B, Zaletnyik P, Awange JL, Lewis R (in press) Computational study of the 3D affine transformation. In: Chareton PG (ed) Computational mathematics: theory, methods and applications. Nova Science Publishers, New York, 30p. To appear. ISBN:978-1-60876-271-2Google Scholar
  52. 404.
    Papp E, Szucs L (2005) Transformation methods of the traditional and satellite based networks (in Hungarian with English abstract). Geomatikai Közlemenyek VIII 85–92Google Scholar
  53. 428.
    Reinking J (2001) Anmerkung zu “Zur Bestimmung eindeutiger transformationparameter”. Zeitschrift für Vermessungswesen 126:295–296Google Scholar
  54. 461.
    Schottenloher M (1997) A mathematical introduction to conformal field theory. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  55. 471.
    Späth H (2004) A numerical method for determining the spatial Helmert transformation in case of different scale factors. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 129:255–257Google Scholar
  56. 483.
    Teunissen PJG (1988) The non-linear 2d symmetric Helmert transformation: an exact nonlinear least squares solution. Bull Geod 62:1–15CrossRefGoogle Scholar
  57. 497.
    Vanicek P, Steeves RR (1996) Transformation of coordinates between two horizontal geodetic datums. J Geod 70:740–745CrossRefGoogle Scholar
  58. 511.
    Watson GA (2006) Computing Helmert transformations. J Comput Appl Math 197:387–395CrossRefGoogle Scholar
  59. 515.
    Welsch WM (1993) A general 7-parameter transformation for the combination, comparison and accuracy control of the terrestrial and satellite network observations. Manuscripta Geodaetica 18:295–305Google Scholar
  60. 526.
    Wolfrum O (1992) Merging terestrial and satellite networks by a ten-parameter transformation model. Manuscripta Geodaetica 17:210–214Google Scholar
  61. 538.
    Yang MY, Förtsner W (2010) Plane detection in point cloud data, TR-IGG-P-2010-01, Technical report. Nr.1, Department of Photogrammetry Institute of Geodesy and Geo-information, University of BonnGoogle Scholar
  62. 543.
    Zaletnyik P (2008) Application of computer algebra and neural networks to solve coordinate transformation problems. Ph.D. thesis at Department of Geodesy and Surveying [in Hungarian], Budapest University of Technology and Economics, HungaryGoogle Scholar
  63. 544.
    Zaletnyik P, Paláncz B (2009) The symbolic solution of the 3D affine transformation in case of three known points (in Hungarian with English abstract). Geomatikai Közlemények XII:35–45Google Scholar
  64. 545.
    Zaletnyik P, Paláncz B, Awange JL, Grafarend EW (2008) Application of computer algebra system to geodesy. In: Sideris MG (ed) Observing our changing earth. International association of geodesy symposia, vol 133. Springer, pp 803–808Google Scholar
  65. 547.
    Zaletnyik P, Völgyesi L, Paláncz B (2008) Modelling local GPS/leveling geoid undulations using support vector machines. Period Polytech Civ Eng 52(1):39–43CrossRefGoogle Scholar
  66. 548.
    Závoti J, Jancso T (2006) The solution of the 7-parameter datum transformation problem with- and without the Groebner basis. Acta Geod Geophys Hung 41(1):87–100CrossRefGoogle Scholar
  67. 549.
    Zhang S (1994) Anwendung der Drehmatrix in Hamilton normierten Quaternionenen bei der Bündelblock Ausgleichung. Zeitschrift für Vermessungswesen 119:203–211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations