Skip to main content

Datum Transformation Problems

  • Chapter
  • First Online:
Geospatial Algebraic Computations

Abstract

The 7-parameter datum transformation \(\mathbb{C}_{7}(3)\) problem involves the determination of seven parameters required to transform coordinates from one system to another. The transformation of coordinates is a computational procedure that maps one set of coordinates in a given system onto another

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Remark: With the Dixon resultant the system of Eq. (20.20), without using the relative coordinates, also provided a solution, which was un-achievable with Groebner basis (see Paláncz et al. [396]).

  2. 2.

    http://library.wolfram.com/infocenter/MathSource/6654/

  3. 3.

    Researcher of Wolfram Research.

  4. 4.

    Remark: Tracking millions of paths is not unrealistic on supercomputers, clusters of workstations or even modern multiprocessor, multi-core desktop computers in parallel, see Blum et al. [91].

References

  1. Abd-Elmotaal H, El-Tokhey M (1995) Effect of spherical approximation on datum transformation. Manuscripta Geodaetica 20:469–474

    Google Scholar 

  2. Abusali PAM, Schutz BE, Tapley BD (1994) Transformation between SLR/VLBI and WGS-84 frames. Bulletin Geodesique 69:61–72

    Article  Google Scholar 

  3. Aduol FWO, Gacoki TG (2002) Transformation between GPS coordinates and local plane UTM coordinates using the excel spreadsheet. Surv Rev 36:449–462

    Article  Google Scholar 

  4. Albertz J, Kreiling W (1975) Photogrammetric guide. Herbert Wichmann Verlag, Karlsruhe, pp 58–60

    Google Scholar 

  5. Awange JL (2002) Groebner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms-adjustment of nonlinear GPS/LPS observations. Ph.D. thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Germany. Technical reports, Report Nr. 2002 (1)

    Google Scholar 

  6. Awange JL (2003) Partial Procrustes solution of the threedimensional orientation problem from GPS/LPS observations. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy – The Challenge of the 3rd Millennium. Springer, Heidelberg, pp 277–286

    Chapter  Google Scholar 

  7. Awange JL, Grafarend EW (2002) Linearized least squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to 7-parameter datum transformation. Zeitschrift für Vermessungswessen 127:109–117

    Google Scholar 

  8. Awange JL, Grafarend EW (2003) Closed form solution of the overdetermined nonlinear 7-parameter datum transformation. Allgemeine Vermessungs Nachrichtern 109:130–148

    Google Scholar 

  9. Awange JL, Grafarend EW, Fukuda Y (2004) Exact solution of the nonlinear 7-parameter datum transformation by Groebner basis. Bollettino di Geodesia e Scienze Affini 63:117–127

    Google Scholar 

  10. Awange JL, Grafarend EW, Fukuda Y, Takemoto S (2005) The role of algebra in modern day geodesy. In: Sanso F (ed) A window on future in the future of geodesy. Springer, Heidelberg, pp 524–529

    Chapter  Google Scholar 

  11. Awange JL, Bae K-H, Claessens S (2008) Procrustean solution of the 9-parameter transformation problem. Earth Planets Space 60:529–537

    Article  Google Scholar 

  12. Baki IzH, Chen YQ (1999) Tailored datum transformation model for locally distributed data. J Surv Eng 125:25–35

    Google Scholar 

  13. Barsi A (2001) Performing coordinate transformation by artificial neural network. Allgemeine Vermessungs-Nachrichten 108:134–137

    Google Scholar 

  14. Bazlov YA, Galazin VF, Kaplan BL, Maksimov VG, Rogozin VP (1999) Propagating PZ 90 and WGS 94 transformation parameters. GPS Solut 3:13–16

    Article  Google Scholar 

  15. Beranek M (1997) Uberlegungen zur Normalverteilung und theoretische Analyse der 3- und 4-Parameter-Transformation. Allgemeine Vermessungs-Nachrichten 104:137–141

    Google Scholar 

  16. Birardi G (1996) The future global geodetic network and the transformation of local onto WGS coordinates. Bullettino di Geodesia e Scienze Affini 55:49–56

    Google Scholar 

  17. Blum L, Cucker F, Shub M, Smale S (1998) Complexity and real computation. Springer, New York

    Book  Google Scholar 

  18. Featherstone WE (1997) A comparison of existing co-ordinate transformation models and parameters in Australia. Cartography 26:13–25

    Article  Google Scholar 

  19. Featherstone W (2000) Refinement of gravimetric geoid using GPS and levelling data. J Surv Eng 126(2):27–56

    Article  Google Scholar 

  20. Francesco D, Mathien PP, Senechal D (1997) Conformal field theory. Springer, Heidelberg/New York

    Book  Google Scholar 

  21. Fröhlich H, Bröker G (2003) Trafox version 2.1. 3d-kartesische Helmert-Transformation. http://www.koordinatentransformation.de/data/trafox.pdf. Accessed 27 Aug 2008

  22. Golub GH, Pereyra V (1973) The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J Numer Anal 10:413–432

    Article  Google Scholar 

  23. Grafarend EW, Awange JL (2000) Determination of vertical deflections by GPS/LPS measurements. Zeitschrift für Vermessungswesen 125:279–288

    Google Scholar 

  24. Grafarend EW, Awange JL (2003) Nonlinear analysis of the three-dimensional datum transformation (conformal group \(\mathbb{C}_{7}(3)\). J Geod 77:66–76

    Article  Google Scholar 

  25. Grafarend EW, Okeke F (1998) Transformation of conformal coordinates of type Mercator from global datum (WGS 84) to local datum (regional, national). Marine Geod 21:169–180

    Article  Google Scholar 

  26. Grafarend EW, Syffus R (1997) Strip transformation of conformal coordinates of type Gauss-Kruger and UTM. Allgemeine Vermessungs-Nachrichten 104:184–190

    Google Scholar 

  27. Grafarend EW, Hendricks A, Gilbert A (2000) Transformation of conformal coordinates of type Gauss-Kruger or UTM from a local datum (Regional, National, European) to a global datum (WGS 84, ITRF 96). Allgemeine Vermessungs-Nachrichten 107:218–222

    Google Scholar 

  28. Grafarend EW, Knickmeyer EH, Schaffrin B (1982) Geodätische Datumtransformationen. Zeitschrift für Vermessungswesen 107:15–25

    Google Scholar 

  29. Grafarend EW, Krumm F, Okeke F (1995) Curvilinear geodetic datum transformation. Zeitschrift für Vermessungswesen 120:334–350

    Google Scholar 

  30. Grafarend EW, Syffus R, You RJ (1995) Projective heights in geometry and gravity space. Allgemeine Vermessungs-Nachrichten 102:382–402

    Google Scholar 

  31. Guo J, Jin F (2001) A new model of digitizing coordinate transformation and its nonlinear solution. Allgemeine Vermessungs-Nachrichten 108:311–317

    Google Scholar 

  32. Harvey BR (1986) Transformation of 3D coordinates. Aust Surv 33:105–125

    Article  Google Scholar 

  33. Kampmann G (1996) New adjustment techniques for the determination of transformation parameters for cadastral and engineering purposes. Geomatica 50:27–34

    Google Scholar 

  34. Kapur D, Saxena T, Yang L (1994) Algebraic and geometric reasoning using Dixon resultants. In: ACM ISSAC 94, International Symposium on Symbolic and Algebraic Computation, Oxford, July 1994, pp 99–107

    Article  Google Scholar 

  35. Kinneen RW, Featherstone WE (2004) Empirical evaluation of published transformation parameters from the Australian geodetic datums (AGD66 and AGD84) to the geocentric datum of Australia (GDA94). J Spat Sci 49(2):1–31

    Article  Google Scholar 

  36. Koch KR (2001) Bermekung zu der Veröffentlichung “Zur Bestimmung eindeutiger transformationparameter”. Zeitschrift für Vermessungswesen 126:297

    Google Scholar 

  37. Koch KR, Fröhlich H, Bröker G (2000) Transformation räumlicher variabler Koordinaten. Allgemeine Vermessungs-Nachrichten 107:293–295

    Google Scholar 

  38. Krarup T (1979) S transformation or how to live without the generalized inverse – almost. Geodetisk Institut, Charlottenlund

    Google Scholar 

  39. Lenzmann E, Lenzmann L (2001) Zur Bestimmung eindeutiger transformationparameter. Zeitschrift für Vermessungswesen 126:138–142

    Google Scholar 

  40. Lenzmann E, Lenzmann L (2001) Erwiderung auf die Anmerkung von Jörg Reinking und die Bermekungen von Karl-Rudolf Koch zu unserem Meitrag “Zur Bestimmung eindeutiger transformationparameter”. Zeitschrift für Vermessungswesen 126:298–299

    Google Scholar 

  41. Lewis RH (2002) Using the Dixon resultant on big problems. In: CBMS Conference, Texas A&M University. http://www.math.tamu.edu/conferences/cbms/abs.html. Accessed 27 Aug 2008

  42. Lewis RH (2008) Heuristics to accelerate the Dixon resultant. Math Comput Simul 77(4):400–407

    Article  Google Scholar 

  43. Mathes A (2002) EasyTrans Pro-Edition, Professionelle Koordinatentransformation für Navigation, Vermessung und GIS, ISBN 978-3-87907-367-2, CD-ROM mit Benutzerhandbuch

    Google Scholar 

  44. Nakos G, Williams R (2002) A fast algorithm implemented in Mathematica provides one-step elimination of a block of unknowns from a system of polynomial equations, Wolfram Library Archive, MathSource. http://library.wolfram.com/infocenter/MathSource/2597/. Accessed 27 Aug 2008

  45. Nakos G, Williams R (1997) Elimination with the Dixon resultant. Math Educ Res 6:11–21

    Google Scholar 

  46. Newsome G, Harvey BR (2003) GPS coordinate transformation parameters for Jamaica. Surv Rev 37:218–233

    Article  Google Scholar 

  47. Nitschke M, Knickmeyer EH (2000) Rotation parameters – a survey of techniques. J Surv Eng 126:83–105

    Article  Google Scholar 

  48. Okeke FI (1998) The curvilinear datum transformation model, DGK, Reihe C, Heft Nr. 481

    Google Scholar 

  49. Paláncz B, Zaletnyik P, Awange JL, Grafarend EW (2008) Dixon resultant’s solution of systems of geodetic polynomial equations. J Geod 82(8):505–511

    Google Scholar 

  50. Paláncz B, Zaletnyik P, Lewis RH, Awange JL (2008) Computational study of the 3D affine transformation, Part II. N-point problem, Wolfram Library Archive, MathSource. http://library.wolfram.com/infocenter/MathSource/7121/. Accessed 27 Aug 2008

  51. Paláncz B, Zaletnyik P, Awange JL, Lewis R (in press) Computational study of the 3D affine transformation. In: Chareton PG (ed) Computational mathematics: theory, methods and applications. Nova Science Publishers, New York, 30p. To appear. ISBN:978-1-60876-271-2

    Google Scholar 

  52. Papp E, Szucs L (2005) Transformation methods of the traditional and satellite based networks (in Hungarian with English abstract). Geomatikai Közlemenyek VIII 85–92

    Google Scholar 

  53. Reinking J (2001) Anmerkung zu “Zur Bestimmung eindeutiger transformationparameter”. Zeitschrift für Vermessungswesen 126:295–296

    Google Scholar 

  54. Schottenloher M (1997) A mathematical introduction to conformal field theory. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  55. Späth H (2004) A numerical method for determining the spatial Helmert transformation in case of different scale factors. Zeitschrift für Geodäsie, Geoinformation und Landmanagement 129:255–257

    Google Scholar 

  56. Teunissen PJG (1988) The non-linear 2d symmetric Helmert transformation: an exact nonlinear least squares solution. Bull Geod 62:1–15

    Article  Google Scholar 

  57. Vanicek P, Steeves RR (1996) Transformation of coordinates between two horizontal geodetic datums. J Geod 70:740–745

    Article  Google Scholar 

  58. Watson GA (2006) Computing Helmert transformations. J Comput Appl Math 197:387–395

    Article  Google Scholar 

  59. Welsch WM (1993) A general 7-parameter transformation for the combination, comparison and accuracy control of the terrestrial and satellite network observations. Manuscripta Geodaetica 18:295–305

    Google Scholar 

  60. Wolfrum O (1992) Merging terestrial and satellite networks by a ten-parameter transformation model. Manuscripta Geodaetica 17:210–214

    Google Scholar 

  61. Yang MY, Förtsner W (2010) Plane detection in point cloud data, TR-IGG-P-2010-01, Technical report. Nr.1, Department of Photogrammetry Institute of Geodesy and Geo-information, University of Bonn

    Google Scholar 

  62. Zaletnyik P (2008) Application of computer algebra and neural networks to solve coordinate transformation problems. Ph.D. thesis at Department of Geodesy and Surveying [in Hungarian], Budapest University of Technology and Economics, Hungary

    Google Scholar 

  63. Zaletnyik P, Paláncz B (2009) The symbolic solution of the 3D affine transformation in case of three known points (in Hungarian with English abstract). Geomatikai Közlemények XII:35–45

    Google Scholar 

  64. Zaletnyik P, Paláncz B, Awange JL, Grafarend EW (2008) Application of computer algebra system to geodesy. In: Sideris MG (ed) Observing our changing earth. International association of geodesy symposia, vol 133. Springer, pp 803–808

    Google Scholar 

  65. Zaletnyik P, Völgyesi L, Paláncz B (2008) Modelling local GPS/leveling geoid undulations using support vector machines. Period Polytech Civ Eng 52(1):39–43

    Article  Google Scholar 

  66. Závoti J, Jancso T (2006) The solution of the 7-parameter datum transformation problem with- and without the Groebner basis. Acta Geod Geophys Hung 41(1):87–100

    Article  Google Scholar 

  67. Zhang S (1994) Anwendung der Drehmatrix in Hamilton normierten Quaternionenen bei der Bündelblock Ausgleichung. Zeitschrift für Vermessungswesen 119:203–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Awange, J.L., Paláncz, B. (2016). Datum Transformation Problems. In: Geospatial Algebraic Computations. Springer, Cham. https://doi.org/10.1007/978-3-319-25465-4_20

Download citation

Publish with us

Policies and ethics