Algebraic Diagnosis of Outliers

  • Joseph L. Awange
  • Béla Paláncz


In Chap. 7, we introduced parameter estimation from observational data sample and defined the models applicable to linear and nonlinear cases. In-order for the estimates to be meaningful however.


Positional Norm Combinatorial Solution Atmospheric Refraction Groebner Basis Polynomial Resultant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 4.
    Aduol FWO (1987) Detection of outliers in geodetic networks using principal component analysis and bias parameter estimation. Technical report no. 2, Institute of Geodesy, University of Stuttgart, StuttgartGoogle Scholar
  2. 5.
    Aduol FWO (1994) Robust geodetic parameter estimation through iterative weighting. Surv Rev 32:359–367CrossRefGoogle Scholar
  3. 7.
    Aduol FWO, Schaffrin B (1986) On outlier identification in geodetic networks using principal component analysis. In: Conference on Influential Data Analysis, University of SheffieldGoogle Scholar
  4. 21.
    Awange JL (2005) Diagnosis of outlier of type multipath in GPS pseudo-range observations. Surv Rev 38:177–189CrossRefGoogle Scholar
  5. 22.
    Awange JL, Aduol FWO (1999) An evaluation of some robust estimation techniques in the estimation of geodetic parameters. Surv Rev 35:146–162CrossRefGoogle Scholar
  6. 23.
    Awange JL, Aduol FWO (2002) An evaluation of some robust estimation techniques in the estimation of geodetic parameters-part II. Surv Rev 36:380–389CrossRefGoogle Scholar
  7. 50.
    Baarda W (1967) Statistical concepts in geodesy. The Netherlands geodetic commission, publication in geodesy, new series vol 2, no 4. Waltman, DelftGoogle Scholar
  8. 52.
    Baarda W (1968) A testing procedure for use in geodetic networks. Publication in geodesy, new series, vol 2, no 5. Rijkscommissie voor Geodesie, DelftGoogle Scholar
  9. 120.
    Cheng C-L, Van Ness JW (1999) Statistical regression with measurement error. Oxford University Press, New YorkGoogle Scholar
  10. 238.
    Gui Q, Zhang J (1998) Robust biased estimation and its applications in geodetic adjustments. J Geod 72:430–435CrossRefGoogle Scholar
  11. 254.
    Hampel FR, Ronchetti EM, Rousseeuw P, Stahel WA (1986) Robust statistic – the approach based non influence functions. Wiley, New YorkGoogle Scholar
  12. 267.
    Heindl G (1982) Experiences with non-statistical method of detecting outliers. In: International Symposium on Geodetic Network and Computations of the I. A. G. Munich, 30th Aug – 5 Sept, 5:19–28Google Scholar
  13. 279.
    Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101CrossRefGoogle Scholar
  14. 280.
    Huber PJ (1972) Robust statistics; a review. Ann Math Stat 43:1041–1067CrossRefGoogle Scholar
  15. 281.
    Huber PJ (1981) Robust statistics. Wiley, New YorkCrossRefGoogle Scholar
  16. 296.
    Kahmen H, Faig W (1988) Surveying. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  17. 303.
    Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  18. 305.
    Koch KR, Yang Y (1998) Konfidenzbereiche und Hypothesenteste für robuste Parameterschätzungen. ZfV 123:20–26Google Scholar
  19. 306.
    Koch KR, Yang Y (1998) Robust Kalman filter for rank deficient observation models. J Geod 72:436–441CrossRefGoogle Scholar
  20. 373.
    Monhor D (2002) Clarification of and complements to the concept of outlier. Geodezia es Kartografia 12:21–27Google Scholar
  21. 376.
    Mukherjee K (1996) Robust estimation in nonlinear regression via minimum distance method. Mathematical methods of statistics, vol 5, No 1. Allerton Press Inc., New YorkGoogle Scholar
  22. 455.
    Saleh J (2000) Robust estimation based on energy minimization principles. J Geod 74:291–305CrossRefGoogle Scholar
  23. 525.
    Wieser A, Brunner FK (2002) Short static GPS sessions: robust estimation results. J GPS Solut 5:70–79CrossRefGoogle Scholar
  24. 532.
    Xu P (1987) A test method for many outliers. I T C J 4:314–317Google Scholar
  25. 534.
    Xu P (1989) On robust estimation with correlated observations. Bull Geod 63:237–252CrossRefGoogle Scholar
  26. 537.
    Yang Y, Cheng MK, Shum CK, Tapley BD (1999) Robust estimation of systematic errors of satellite laser range. J Geod 73:345–349CrossRefGoogle Scholar
  27. 538.
    Yang MY, Förtsner W (2010) Plane detection in point cloud data, TR-IGG-P-2010-01, Technical report. Nr.1, Department of Photogrammetry Institute of Geodesy and Geo-information, University of BonnGoogle Scholar
  28. 541.
    Youcai H, Mertikas SP (1995) On the design of robust regression estimators. Man Geod 20:145–160Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations