Advertisement

GNSS Environmental Monitoring

  • Joseph L. Awange
  • Béla Paláncz
Chapter

Abstract

In 1997, the Kyoto protocol to the United Nation’s framework convention on climate change spelt out measures that were to be taken to reduce the greenhouse gas emission that has contributed to global warming.

Keywords

Global Position System Total Electronic Content Impact Parameter Refraction Angle Global Position System Receiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 13.
    Anthes R (2003) The constellation observing system for meteorology ionosphere and climate (COSMIC). In: International Workshop on GPS Meteorology, Tsukuba, 14th–17th Jan 2003Google Scholar
  2. 14.
    Anthes RA (2004) Application of GPS remote sensing to meteorology and related fields. J Meteorol Soc Jpn 82(1B):I–IIGoogle Scholar
  3. 24.
    Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for flood forecasting. Accepted to the International Civil Engineering Conference on Sustainable Development in the 21st Century “The Civil Engineer in Development”, Nairobi, 12–16 Aug 2003Google Scholar
  4. 39.
    Awange JL, Fukuda Y, Takemoto S, Wickert J, Aoyama Y (2004) Analytic solution of GPS atmospheric sounding refraction angles. Earth Planets Space 56:573–587CrossRefGoogle Scholar
  5. 46.
    Awange JL (2010) GNSS environmental monitoring. Springer, BerlinCrossRefGoogle Scholar
  6. 57.
    Baker HC, Dodson AH, Penna NT, Higgins M, Offiler D (2001) Ground-based GPS water vapour estimation: potential for meteorological forecasting. J Atmos Solar-Terr Phys 63(12):1305–1314CrossRefGoogle Scholar
  7. 74.
    Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386CrossRefGoogle Scholar
  8. 119.
    Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of apace geodetic data. J Geophys Res 102(B9):20489–20502CrossRefGoogle Scholar
  9. 145.
    Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607CrossRefGoogle Scholar
  10. 170.
    Fischbach FF (1965) A satellite method for pressure and temperature below 24km. Bull Am Meteorol 46:528–532Google Scholar
  11. 174.
    Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delay. Ann Geophys 18:223–234CrossRefGoogle Scholar
  12. 245.
    Gurbunov ME, Gurvich AS, Bengtsson L (1996) Advanced algorithms of inversion of GPS/MET satellite data and their application to the reconstruction of temperature and humidity. Report No. 211, Max-Plunk-Institut für Meteorologie, HamburgGoogle Scholar
  13. 258.
    Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapor mapping from interferometric radar measurements. Science 283:1297–1299CrossRefGoogle Scholar
  14. 264.
    Healey S, Jupp A, Offiler D, Eyre J (2003) The assimilation of radio occultation measurements. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, HeidelbergGoogle Scholar
  15. 276.
    Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite system: GPS, GLONASS; Galileo and more. Springer, WienGoogle Scholar
  16. 309.
    Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terr Atmos Ocean Sci 11:157–186Google Scholar
  17. 315.
    Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using global positioning system. J Geophy Res 102:23429–23465CrossRefGoogle Scholar
  18. 322.
    Larson LW (1996) Destructive water: water-caused natural disasters, their abetment and control. In: IAHS Conference, Anaheim, June 24–28Google Scholar
  19. 349.
    Mackenzie FT (2003) Our changing planet; an introduction to Earth system science and global environmental change, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  20. 368.
    Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94–18, PasadenaGoogle Scholar
  21. 383.
    Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  22. 427.
    Reigber C, Lühr H, Schwintzer P (2003) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, HeidelbergCrossRefGoogle Scholar
  23. 432.
    Rocken C, Anthes R, Exner M, Hunt D, Sokolovski S, Ware R, Gorbunov M, Schreiner S, Feng D, Hermann B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29860CrossRefGoogle Scholar
  24. 472.
    Steiner AK (1998) High resolution sounding of key climate variables using the radio occultation technique. Dissertation, No. 3, Institute for Meteorology and Geophysics, University of GrazGoogle Scholar
  25. 473.
    Steiner AK, Kirchengast G, Foelsche U, Kornblueh L, Manzini E, Bengtsson L (2001) GNSS occultation sounding for climate monitoring. Phys Chem Earth (A) 26:113–124CrossRefGoogle Scholar
  26. 492.
    Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimata F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan-exploring frontiers of geodesy-. Earth Planets Sp 50(10):i–vGoogle Scholar
  27. 493.
    Tsuda T, Hocke K (2004) Application of GPS occultation for studies of atmospheric waves in the middle atmosphere and ionosphere. In: Anthens RA et al (eds) Application of GPS remote sensing to meteorology and related fields. J Meteorol Soc Jpn 82(1B):419–426Google Scholar
  28. 505.
    Vorob’ev VV, Krasil’nikova TG (1994) Estimation of the accuracy of atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Phys Atmos Oceans 29:602–609Google Scholar
  29. 516.
    Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K, Kuettner J, Minster B, Sorooshian S (2000) SuomiNet: a real time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81:677–694CrossRefGoogle Scholar
  30. 521.
    Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng CZ, Healy SB et al (2008) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terrestrial, Atmospheric and Oceanic Sciences (in print)Google Scholar
  31. 522.
    Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: Algorithmen, Prozessierungssystem und erste Ergebnisse. Dissertation, Scientific technical report STR02/07, GFZ PotsdamGoogle Scholar
  32. 542.
    Yunck TP (2003) The promise of spaceborne GPS for Earth remote sensing. In: International Workshop on GPS Meteorology, Tsukuba, 14–17 Jan 2003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations