LPS-GNSS Orientations and Vertical Deflections

  • Joseph L. Awange
  • Béla Paláncz


Since the advent of the Global Navigation Satellite System (GNSS) , in particular the Global Positioning System (GPS), many fields within geosciences, such as geodesy, geoinformatics, geophysics, hydrology etc., have undergone tremendous changes. GPS satellites have in fact revolutionized operations in these fields and the entire world in ways that its inventors never imagined. The initial goal of GPS satellites was to provide the capability for the US military to position themselves accurately from space. This way, they would be able to know the positions of their submarines without necessarily relying on fixed ground stations that were liable to enemy attack. Slowly, but surely, the civilian community, led by geodesists, began to devise methods of exploiting the potential of this system. The initial focus of research was on the improvement of positioning accuracies since civilians only have access to the so called coarse acquisition or C/A-code of the GPS signal. This code is less precise when compared to the P-code used by the US military and its allies. The other source of error in GPS positioning was the Selective Availability (SA) , i.e., intentional degradation of the GPS signal by the US military that would lead to a positioning error of ±100 m. However, in May 2000, the then president of the United States Bill Clinton, officially discontinued this process.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Global Position System Satellite Vertical Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 11.
    Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949CrossRefGoogle Scholar
  2. 19.
    Awange JL (2003) Partial Procrustes solution of the threedimensional orientation problem from GPS/LPS observations. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy – The Challenge of the 3rd Millennium. Springer, Heidelberg, pp 277–286CrossRefGoogle Scholar
  3. 46.
    Awange JL (2010) GNSS environmental monitoring. Springer, BerlinCrossRefGoogle Scholar
  4. 59.
    Balodimos DD, Korakitis R, Lambrou E, Pantazis G (2003) Fast and accurate determination of astronomical coordinates Θ, Λ and azimuth using total station and GPS receiver. Surv Rev 37:269–275CrossRefGoogle Scholar
  5. 143.
    Dach R (2000) Einfluß von Auflasteffekten auf Präzise GPS-Messungen, DGK, Reihe C, Heft Nr. 519Google Scholar
  6. 162.
    Featherstone WE, Lichti DD (2008) Fitting gravimetric geoid models to vertical deflections. J Geod 83:583–589. doi:10.1007/s00190-008-0263-4CrossRefGoogle Scholar
  7. 200.
    Grafarend EW (1975) Three dimensional Geodesy 1. The holonomity problem. Zeitschrift für Vermessungswesen 100:269–280Google Scholar
  8. 201.
    Grafarend EW (1981) Die Beobachtungsgleichungen der dreidimensionalen Geodäsie im Geometrie- und Schwereraum. Ein Beitrag zur operationellen Geodäsie. Zeitschrift für Vermessungswesen 106:411–429Google Scholar
  9. 203.
    Grafarend EW (1988) Azimuth transport and the problem of orientation within geodetic traverses and geodetic networks. Vermessung, Photogrammetrie, Kulturtechnik 86:132–150Google Scholar
  10. 206.
    Grafarend EW (1991) Application of geodesy to engineering. In: Linkwitz K, Eisele V, Mönicke HJ (eds) IAG-Symposium No. 108. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  11. 210.
    Grafarend EW, Awange JL (2000) Determination of vertical deflections by GPS/LPS measurements. Zeitschrift für Vermessungswesen 125:279–288Google Scholar
  12. 212.
    Grafarend EW, Keller W (1995) Setup of observational functionals in gravity space as well as in geometry space. Manuscripta Geodetica 20:301–325Google Scholar
  13. 217.
    Grafarend EW, Richter B (1977) Generalized Laplace condition. Bull Geod 51:287–293CrossRefGoogle Scholar
  14. 229.
    Grafarend EW, Lohse P, Schaffrin B (1989) Dreidimensionaler Rückwärtsschnitt. Zeitschrift für Vermessungswesen 114:61–67, 127–137, 172–175, 225–234, 278–287Google Scholar
  15. 234.
    Grewal MS, Weill LR, Andrews AP (2001) Global positioning systems, inertial navigation and integration. Wiley, New YorkGoogle Scholar
  16. 256.
    Hanselman D, Littlefield B (1997) The student edition of Matlab. Prentice-Hall, New JerseyGoogle Scholar
  17. 270.
    Hirt C, Bürki B (2002) The digital zenith camera – a new high-precision and economic astrogeodetic observation system for real-time measurement of deflections of the vertical. In: Tziavos I (ed) Proceedings of the 3rd Meeting of the International Gravity and Geoid Commission of the International Association of Geodesy, Thessaloniki, pp 161–166Google Scholar
  18. 274.
    Hirt C, Bürki B, Somieski A, Seeber G (2010) Modern determination of vertical deflections using digital zenith cameras. J Surv Eng 136(1):1–12CrossRefGoogle Scholar
  19. 275.
    Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice, 5th edn. Springer, WienCrossRefGoogle Scholar
  20. 276.
    Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite system: GPS, GLONASS; Galileo and more. Springer, WienGoogle Scholar
  21. 316.
    Kurz S (1996) Positionierung mittels Rückwartsschnitt in drei Dimensionen. Studienarbeit, Geodätisches Institut, University of Stuttgart, StuttgartGoogle Scholar
  22. 325.
    Leick A (2003) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  23. 364.
    Mathes A (1998) GPS und GLONASS als Teil eines hybrid Meßsystems in der Geodäsie am Beispiel des systems HIGGINS, Dissertationen, DGK, Reihe C, Nr. 500Google Scholar
  24. 368.
    Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94–18, PasadenaGoogle Scholar
  25. 429.
    Richter B (1986) Entwurf eines nichtrelativistischen geodätisch-astronomischen Bezugssystems, DGK, Reihe C, Heft Nr. 322Google Scholar
  26. 463.
    Shut GH (1958/59) Construction of orthogonal matrices and their application in analytical Photogrammetrie. Photogrammetria XV:149–162Google Scholar
  27. 464.
    Schwarze VS (1995) Satellitengeodätische Positionierung in der relativistischen Raum-Zeit, DGK, Reihe C, Heft Nr.449Google Scholar
  28. 475.
    Strang G, Borre K (1997) Linear algebra, geodesy and GPS. Wellesley Cambridge Press, WellesleyGoogle Scholar
  29. 485.
    Thompson EH (1959) A method for the construction of orthogonal matrices. Photogrammetria III:55–59Google Scholar
  30. 486.
    Thompson EH (1959) An exact linear solution of the absolute orientation. Photogrammetria XV:163–179Google Scholar
  31. 504.
    Voigt C, Denker H, Hirt C (2009) Regional astrogeodetic validation of GPS/levelling data and Quasigeoid models. In: Sideris MG (ed) Observing our changing earth. International association of geodesy symposia, Springer, Heidelberg/New York, vol 133, pp 413–420CrossRefGoogle Scholar
  32. 531.
    Xu G (2003) GPS. theory, algorithms and applications. Springer, Berlin/HeidelbergGoogle Scholar
  33. 549.
    Zhang S (1994) Anwendung der Drehmatrix in Hamilton normierten Quaternionenen bei der Bündelblock Ausgleichung. Zeitschrift für Vermessungswesen 119:203–211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations