Advertisement

Introduction

  • Joseph L. Awange
  • Béla Paláncz
Chapter

Abstract

A potential answer to modern challenges faced by geospatialists such as geodesists and geoinformatists (see, e.g., Sect. 1.3), lies in the application of algebraic and numeric computational techniques. The present book provides an in-depth look at algebraic computational methods and combines them with special local and global numerical methods like the Extended Newton-Raphson and the Homotopy continuation method to provide smooth and efficient solutions to real life-size problems often encountered in geodesy and geoinformatics, but which cannot be adequately solved by algebraic methods alone. Some new but very effective techniques in geospatial, e.g., multiobjective optimization, symbolic regression, and robust estimation are also introduced.

Keywords

Multiobjective Optimization Algebraic Method Symbolic Regression Large Storage Capacity Explicit Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 17.
    Awange JL (2002) Groebner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms-adjustment of nonlinear GPS/LPS observations. Ph.D. thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Germany. Technical reports, Report Nr. 2002 (1)Google Scholar
  2. 39.
    Awange JL, Fukuda Y, Takemoto S, Wickert J, Aoyama Y (2004) Analytic solution of GPS atmospheric sounding refraction angles. Earth Planets Space 56:573–587CrossRefGoogle Scholar
  3. 42.
    Awange JL, Grafarend EW, Fukuda Y, Takemoto S (2005) The application of commutative algebra to geodesy: two examples. J Geod 79:93–102CrossRefGoogle Scholar
  4. 44.
    Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, BerlinGoogle Scholar
  5. 60.
    Bancroft S (1985) An algebraic solution of the GPS equations. IEEE Trans Aerosp Electron Syst AES-21:56–59CrossRefGoogle Scholar
  6. 84.
    Biagi L, Sanso F (2004) Sistemi di riferimento in geodesia: algebra e geometria dei minimi quadrati per un modello con deficienza di rango (parte seconda). Bollettino di Geodesia e Science Affini 63:29–52Google Scholar
  7. 136.
    Cox D, Little J, O’Shea D (1998) Using algebraic geometry. Graduate text in mathematics, vol 185. Springer, New YorkGoogle Scholar
  8. 223.
    Grafarend EW, Shan J (1996) Closed-form solution of the nonlinear pseudo-ranging equations (GPS). Artif Satell Planet Geod 31:133–147Google Scholar
  9. 254.
    Hampel FR, Ronchetti EM, Rousseeuw P, Stahel WA (1986) Robust statistic – the approach based non influence functions. Wiley, New YorkGoogle Scholar
  10. 279.
    Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101CrossRefGoogle Scholar
  11. 281.
    Huber PJ (1981) Robust statistics. Wiley, New YorkCrossRefGoogle Scholar
  12. 301.
    Kleusberg A (1994) Die direkte Lösung des räumlichen Hyperbelschnitts. Zeitschrift für Vermessungswesen 119:188–192Google Scholar
  13. 302.
    Kleusberg A (2003) Analytical GPS navigation solution. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy – the challenge of the 3rd millennium. Springer, Heidelberg, pp 93–96CrossRefGoogle Scholar
  14. 320.
    Lannes A, Durand S (2003) Dual algebraic formulation of differential GPS. J Geod 77:22–29CrossRefGoogle Scholar
  15. 338.
    Lichtenegger H (1995) Eine direkte Lösung des räumlichen Bogenschnitts. Österreichische Zeitschrift für Vermessung und Geoinformation 83:224–226Google Scholar
  16. 369.
    Merritt EL (1949) Explicit three-point resection in space. Phot Eng 15:649–665Google Scholar
  17. 417.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  18. 466.
    Singer P, Ströbel D, Hördt R, Bahndorf J, Linkwitz K (1993) Direkte Lösung des räümlichen Bogenschnitts. Zeitschrift für Vermessungswesen 118:20–24Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joseph L. Awange
    • 1
  • Béla Paláncz
    • 2
  1. 1.Curtin UniversityPerthAustralia
  2. 2.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations