Batteries for Implants

  • Vinod Kumar Khanna


Batteries for implants must possess characteristics such as safety, reliability, high volumetric energy density, low self-discharge, and long duration of service, which represent essential commitments from manufacturers. The state of discharge must be indicated. In the primary batteries, lithium metal anodes are used. The cathode systems include iodine, manganese oxide, carbon monofluoride, silver vanadium oxide, and crossbreed or hybrid cathodes. This choice of batteries caters to the power levels required by implantable devices, which are spread over a broad range of current values from microampere to ampere levels. Limited battery life is a major impediment to the development of advanced medical implant devices, e.g., when a pacemaker battery runs out, it has to be replaced by surgery. With progressive shrinkage of implant size, more emphasis is laid on building smaller, longer-lasting batteries. Applications involving high power usage rates such as neurostimulators working at milliwatt powers employ secondary rechargeable batteries to achieve longer life span with reduced size.


Battery Lithium battery Iodine cathode Manganese dioxide cathode Carbon monofluoride cathode Silver vanadium oxide cathode Lithium-ion battery 


  1. 1.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Takeuchi ES, Leising RA, Spillman DM et al (2003) Lithium batteries for medical applications. In: Nazri G-A, Pistoia G (eds) Lithium batteries-science and technology. Springer, New York, pp 686–700CrossRefGoogle Scholar
  3. 3.
    Gutmann F, Hermann AM, Rembaum A (1967) Solid-state electrochemical cells based on charge transfer complexes. J Electrochem Soc 114:323–329CrossRefGoogle Scholar
  4. 4.
    Holmes CF (2007) The lithium/iodine-polyvinylpyridine battery—35 years of successful clinical use. ECS Trans 6(5):1–7CrossRefGoogle Scholar
  5. 5.
    Rudolph FW (1990) Anode coating for lithium cell. US Patent 4,934,306Google Scholar
  6. 6.
    Pistoia G (1982) Some restatements on the nature and behavior of MnO2 for Li batteries. J Electrochem Soc 129(9):1861–1865CrossRefGoogle Scholar
  7. 7.
    Ohzuku T, Kitagawa M, Hirai T (1989) Electrochemistry of manganese dioxide in lithium nonaqueous cell I. X‐ray diffractional study on the reduction of electrolytic manganese dioxide. J Electrochem Soc 136(11):3169–3174CrossRefGoogle Scholar
  8. 8.
    Nardi JC (1985) Characterization of the Li/MnO2 multistep discharge. J Electrochem Soc 132:1787–1791CrossRefGoogle Scholar
  9. 9.
    Usrey ML, Chen X, Pena Hueso JA, et al (2010) Lithium/carbon monofluoride batteries with organosilicon electrolytes. United States Patent US 8,486,569 B2Google Scholar
  10. 10.
    Greatbatch W, Holmes CF, Takeuchi ES et al (1996) Lithium/carbon monofluoride (Li/CFx): a new pacemaker battery. Pacing Clin Electrophysiol 19(11):1836–1840CrossRefGoogle Scholar
  11. 11.
    Zhang SS, Foster D, Read J (2009) Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material. J Power Sources 188:601–605CrossRefGoogle Scholar
  12. 12.
    Zhang SS, Foster D, Read J (2009) Carbothermal treatment for the improved discharge performance of primary Li/CFx battery. J Power Sources 191:648–652CrossRefGoogle Scholar
  13. 13.
    Rangasamy E, Li J, Sahu G et al (2014) Pushing the theoretical limit of Li-CFx batteries: a tale of bifunctional electrolyte. J Am Chem Soc 136(19):6874–6877CrossRefGoogle Scholar
  14. 14.
    Chen K, Merritt DR, Howard WG et al (2006) Hybrid cathode lithium batteries for implantable medical applications. J Power Sources 162:837–840CrossRefGoogle Scholar
  15. 15.
    Takeuchi ES, Thiebolt WC III (1988) The reduction of silver vanadium oxide in lithium/silver vanadium oxide cells. J Electrochem Soc 135(11):2691–2694CrossRefGoogle Scholar
  16. 16.
    Leising RA, Thiebolt WC, Takeuchi ES (1994) Solid-state characterization of reduced silver vanadium oxide from the Li/SVO discharge reaction. Inorg Chem 33:5733–5740CrossRefGoogle Scholar
  17. 17.
    Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21:9841–9848CrossRefGoogle Scholar
  18. 18.
    Fehrmann G, Frömmel R, Wolf R (1996) Galvanic cell having improved cathode, US Patent 5,587,258.Google Scholar
  19. 19.
    Drews J, Wolf R, Fehrmann G et al (1997) High-rate lithium manganese-dioxide batteries—the double cell concept. J Power Sources 65(1-2):129–132CrossRefGoogle Scholar
  20. 20.
    Drews J, Wolf R, Fehrmann G et al (1999) Development of a hybrid battery system for an implantable biomedical device, especially a defibrillator cardioverter (ICD). J Power Sources 80(1-2):107–111CrossRefGoogle Scholar
  21. 21.
    Root MJ (2010) Lithium–manganese dioxide cells for implantable defibrillator devices—discharge voltage models. J Power Sources 195(15):5089–5093CrossRefGoogle Scholar
  22. 22.
    Gan H, Rubino RS, Takeuchi ES (2005) Dual-chemistry cathode system for high-rate pulse applications. J Power Sources 146:101–106CrossRefGoogle Scholar
  23. 23.
    Brodd RJ, Bullock KR, Leising RA et al (2004) Batteries, 1977 to 2002. J Electrochem Soc 151:K1–K11CrossRefGoogle Scholar
  24. 24.
    Orman HJ, Wiseman PJ (1984) Cobalt (III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction. Acta Crystallogr C C40:12–14CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vinod Kumar Khanna
    • 1
  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations