Circadian Rhythms in Stem Cell Biology and Function

  • Pieterjan Dierickx
  • Bastiaan Du Pré
  • Dries A. M. Feyen
  • Niels Geijsen
  • Toon van Veen
  • Pieter A. Doevendans
  • Linda W. Van LaakeEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The mammalian circadian clock is a time-keeping system that adapts the body physiology to light/dark cycles with a period of 24 hours. It consists of a central clock in the suprachiasmatic nucleus (SCN) within the brain, and peripheral clocks in multiple other tissues. While the central clock is entrained by light, peripheral clocks are kept in synchrony by the SCN via humoral factors, metabolites and body temperature. Additionally, SCN independent determinants like food and physical activity influence peripheral clocks that can therefore oscillate in a cell-autonomous manner.

The circadian clock has been implicated in various processes such as cell cycle, cell differentiation, metabolism, aging, and regeneration. Indeed, impairment of the clock leads to defects ranging from sleep, metabolic and cardiovascular disorders to premature aging and even the development of cancer. Concerning cardiac regenerative therapy, stem cells show a tremendous potential to improve heart function after impairment. Interestingly, the circadian clock modulates stem cell dormancy, mobilization and proliferation. In this chapter we review the function of circadian rhythms in stem cells and their derivatives. We outline their implication in regeneration, with a focus on how the circadian clock influences myocardial biology and how it might improve cardiac therapy.


Circadian rhythms Stem cells Core clock machinery Cell cycle Cardiomyocytes 


  1. Adamovich Y, Aviram R, Asher G (2014) The emerging roles of lipids in circadian control. Biochim Biophys Acta 1851(8):1017–1025. doi: 10.1016/j.bbalip.2014.11.013 PubMedCrossRefGoogle Scholar
  2. Akashi M, Takumi T (2005) The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12:441–448. doi: 10.1038/nsmb925 PubMedCrossRefGoogle Scholar
  3. Akhtar RA, Reddy AB, Maywood ES et al (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12:540–550PubMedCrossRefGoogle Scholar
  4. Aschoff J (1983) Circadian control of body temperature. J Therm Biol 8:143–147. doi: 10.1016/0306-4565(83)90094-3 CrossRefGoogle Scholar
  5. Asher G, Gatfield D, Stratmann M et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328. doi: 10.1016/j.cell.2008.06.050 PubMedCrossRefGoogle Scholar
  6. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937PubMedCrossRefGoogle Scholar
  7. Bieler J, Cannavo R, Gustafson K et al (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 10:739. doi: 10.15252/msb.20145218 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bonzini M, Palmer KT, Coggon D et al (2011) Shift work and pregnancy outcomes: a systematic review with meta-analysis of currently available epidemiological studies. BJOG 118:1429–1437. doi: 10.1111/j.1471-0528.2011.03066.x PubMedCrossRefGoogle Scholar
  9. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305. doi: 10.1038/nrm1616 PubMedCrossRefGoogle Scholar
  10. Bray MS, Shaw CA, Moore MWS et al (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294:H1036–H1047. doi: 10.1152/ajpheart.01291.2007 PubMedCrossRefGoogle Scholar
  11. Brown SA (2011) Circadian rhythms. A new histone code for clocks? Science 333:1833–1834. doi: 10.1126/science.1212842 PubMedCrossRefGoogle Scholar
  12. Brown SA (2014) Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development 141:3105–3111. doi: 10.1242/dev.104851 PubMedCrossRefGoogle Scholar
  13. Brown SA, Azzi A (2013) Peripheral circadian oscillators in mammals. Handb Exp Pharmacol (217):45–66. doi:  10.1007/978-3-642-25950-0_3 Google Scholar
  14. Brown SA, Ripperger J, Kadener S et al (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308:693–696. doi: 10.1126/science.1107373 PubMedCrossRefGoogle Scholar
  15. Bunger MK, Wilsbacher LD, Moran SM et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017. doi: 10.1016/j.cell.2014.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cajochen C, Kräuchi K, Wirz-Justice A (2003) Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 15:432–437PubMedCrossRefGoogle Scholar
  17. Camacho F, Cilio M, Guo Y et al (2001) Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett 489:159–165PubMedCrossRefGoogle Scholar
  18. Chatterjee S, Yin H, Nam D et al (2014) Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion. Exp Cell Res 331(1):200–210. doi: 10.1016/j.yexcr.2014.08.041 PubMedCrossRefGoogle Scholar
  19. Chen R, Schirmer A, Lee Y et al (2009) Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36:417–430. doi: 10.1016/j.molcel.2009.10.012 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen R, D’Alessandro M, Lee C (2013) miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol 23:1959–1968. doi: 10.1016/j.cub.2013.08.005 PubMedCrossRefGoogle Scholar
  21. Damiola F, Le Minh N, Preitner N et al (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961. doi: 10.1101/gad.183500 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dardente H, Mendoza J, Fustin J-M et al (2008) Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals. PLoS One 3, e3530. doi: 10.1371/journal.pone.0003530 PubMedPubMedCentralCrossRefGoogle Scholar
  23. de Vries JI, Visser GH, Mulder EJ, Prechtl HF (1987) Diurnal and other variations in fetal movement and heart rate patterns at 20–22 weeks. Early Hum Dev 15:333–348PubMedCrossRefGoogle Scholar
  24. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545. doi: 10.1038/nn1884 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dierickx P, Doevendans PA, Geijsen N, van Laake LW (2012) Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair. J Cardiovasc Transl Res 5:566–580. doi: 10.1007/s12265-012-9391-6 PubMedCrossRefGoogle Scholar
  26. DiTacchio L, Le HD, Vollmers C et al (2011) Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333:1881–1885. doi: 10.1126/science.1206022 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508. doi: 10.1016/j.cell.2006.03.033 PubMedCrossRefGoogle Scholar
  28. Du Pré BC, van Veen TAB, Young ME et al (2014) Circadian rhythms in cell maturation. Physiology (Bethesda) 29:72–83. doi: 10.1152/physiol.00036.2013 Google Scholar
  29. Du N-H, Arpat AB, De Matos M et al (2014) MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. Elife 3, e02510. doi: 10.7554/eLife.02510 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dudley CA, Erbel-Sieler C, Estill SJ et al (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383. doi: 10.1126/science.1082795 PubMedCrossRefGoogle Scholar
  31. Duffield GE, Best JD, Meurers BH et al (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12:551–557PubMedCrossRefGoogle Scholar
  32. Durgan DJ, Young ME (2010) The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 106:647–658. doi: 10.1161/CIRCRESAHA.109.209957 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C et al (2010) Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 106:546–550. doi: 10.1161/CIRCRESAHA.109.209346 PubMedCrossRefGoogle Scholar
  34. Eide EJ, Woolf MF, Kang H et al (2005) Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25:2795–2807. doi: 10.1128/MCB.25.7.2795-2807.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Etchegaray J-P, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182. doi: 10.1038/nature01314 PubMedCrossRefGoogle Scholar
  36. Falvey E, Marcacci L, Schibler U (1996) DNA-binding specificity of PAR and C/EBP leucine zipper proteins: a single amino acid substitution in the C/EBP DNA-binding domain confers PAR-like specificity to C/EBP. Biol Chem 377:797–809PubMedGoogle Scholar
  37. Feillet C, Krusche P, Tamanini F et al (2014) Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci U S A 111:9828–9833. doi: 10.1073/pnas.1320474111 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Feillet C, van der Horst GTJ, Levi F et al (2015) Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front Neurol 6:96. doi: 10.3389/fneur.2015.00096 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fu L, Pelicano H, Liu J et al (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50PubMedCrossRefGoogle Scholar
  40. Fu L, Patel MS, Bradley A et al (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815. doi: 10.1016/j.cell.2005.06.028 PubMedCrossRefGoogle Scholar
  41. Fustin J-M, Doi M, Yamaguchi Y et al (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155:793–806. doi: 10.1016/j.cell.2013.10.026 PubMedCrossRefGoogle Scholar
  42. Gallego M, Kang H, Virshup DM (2006) Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem J 399:169–175. doi: 10.1042/BJ20060678 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gekakis N, Staknis D, Nguyen HB et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569PubMedCrossRefGoogle Scholar
  44. Gibbs J, Ince L, Matthews L et al (2014) An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20:919–926. doi: 10.1038/nm.3599 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gimble JM, Floyd ZE, Bunnell BA (2009) The 4th dimension and adult stem cells: can timing be everything? J Cell Biochem 107:569–578. doi: 10.1002/jcb.22153 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Griffin EA, Staknis D, Weitz CJ (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286:768–771PubMedCrossRefGoogle Scholar
  47. Guillaumond F, Dardente H, Giguère V, Cermakian N (2005) Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 20:391–403. doi: 10.1177/0748730405277232 PubMedCrossRefGoogle Scholar
  48. Guo B, Chatterjee S, Li L et al (2012) The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J 26:3453–3463. doi: 10.1096/fj.12-205781 PubMedCrossRefGoogle Scholar
  49. Harding HP, Lazar MA (1993) The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol Cell Biol 13:3113–3121PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hirano A, Yumimoto K, Tsunematsu R et al (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152:1106–1118. doi: 10.1016/j.cell.2013.01.054 PubMedCrossRefGoogle Scholar
  51. Hogenesch JB, Chan WK, Jackiw VH et al (1997) Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272:8581–8593PubMedCrossRefGoogle Scholar
  52. Hua H, Wang Y, Wan C et al (2006) Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci 97:589–596. doi: 10.1111/j.1349-7006.2006.00225.x PubMedPubMedCentralCrossRefGoogle Scholar
  53. Izumo M, Sato TR, Straume M, Johnson CH (2006) Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput Biol 2, e136. doi: 10.1371/journal.pcbi.0020136 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Janich P, Pascual G, Merlos-Suárez A et al (2011) The circadian molecular clock creates epidermal stem …. Nature 480:209–214. doi: 10.1038/nature10649 PubMedCrossRefGoogle Scholar
  55. Janich P, Toufighi K, Solanas G et al (2013) Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell 13:745–753. doi: 10.1016/j.stem.2013.09.004 PubMedCrossRefGoogle Scholar
  56. Johnson MH, Lim A, Fernando D, Day ML (2002) Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse. Reprod Biomed Online 4:140–145PubMedCrossRefGoogle Scholar
  57. Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17:1414–1421. doi: 10.1038/nsmb.1961 PubMedCrossRefGoogle Scholar
  58. Keesler GA, Camacho F, Guo Y et al (2000) Phosphorylation and destabilization of human period I clock protein by human casein kinase I epsilon. Neuroreport 11:951–955PubMedCrossRefGoogle Scholar
  59. Kelleher FC, Rao A, Maguire A (2014) Circadian molecular clocks and cancer. Cancer Lett 342:9–18. doi: 10.1016/j.canlet.2013.09.040 PubMedCrossRefGoogle Scholar
  60. Kennaway DJ, Varcoe TJ, Voultsios A, Boden MJ (2013) Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS One 8, e65255. doi: 10.1371/journal.pone.0065255 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kim JY, Kwak PB, Weitz CJ (2014) Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol Cell 56:738–748. doi: 10.1016/j.molcel.2014.10.017 PubMedCrossRefGoogle Scholar
  62. Kojima S, Sher-Chen EL, Green CB (2012) Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev 26:2724–2736. doi: 10.1101/gad.208306.112 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kowalska E, Moriggi E, Bauer C et al (2010) The circadian clock starts ticking at a developmentally early stage. J Biol Rhythms 25:442–449. doi: 10.1177/0748730410385281 PubMedCrossRefGoogle Scholar
  64. Kowalska E, Ripperger JA, Hoegger DC et al (2013) NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci U S A 110:1592–1599. doi: 10.1073/pnas.1213317110 PubMedCrossRefGoogle Scholar
  65. Kume K, Zylka MJ, Sriram S et al (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205PubMedCrossRefGoogle Scholar
  66. Kushibiki T, Awazu K (2008) Controlling osteogenesis and adipogenesis of mesenchymal stromal cells by regulating a circadian clock protein with laser irradiation. Int J Med Sci 5:319–326PubMedPubMedCentralCrossRefGoogle Scholar
  67. Laerum OD (1995) Hematopoiesis occurs in rhythms. Exp Hematol 23:1145–1147. doi: 10.1038/ncomms8056 PubMedGoogle Scholar
  68. Lamia KA, Storch K-F, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172–15177. doi: 10.1073/pnas.0806717105 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Laranjeiro R, Tamai TK, Peyric E et al (2013) Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing. Proc Natl Acad Sci U S A 110:6835–6840. doi: 10.1073/pnas.1217912110 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lowrey PL, Shimomura K, Antoch MP et al (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lumaban JG, Nelson DL (2014) The Fragile X proteins Fmrp and Fxr2p cooperate to regulate glucose metabolism in mice. Hum Mol Genet 24(8):2175–2184. doi: 10.1093/hmg/ddu737 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631. doi: 10.1038/nature09253 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Matsuo T, Yamaguchi S, Mitsui S et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259. doi: 10.1126/science.1086271 PubMedCrossRefGoogle Scholar
  74. McGlincy NJ, Valomon A, Chesham JE et al (2012) Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol 13:R54. doi: 10.1186/gb-2012-13-6-r54 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447. doi: 10.1038/nature06685 PubMedCrossRefGoogle Scholar
  76. Merrow M, Spoelstra K, Roenneberg T (2005) The circadian cycle: daily rhythms from behaviour to genes. EMBO Rep 6:930–935. doi: 10.1038/sj.embor.7400541 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Meyer T, Kneissel M, Mariani J, Fournier B (2000) In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism. Proc Natl Acad Sci U S A 97:9197–9202. doi: 10.1073/pnas.150246097 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Milagro FI, Gómez-Abellán P, Campión J et al (2012) CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 29:1180–1194. doi: 10.3109/07420528.2012.719967 PubMedCrossRefGoogle Scholar
  79. Miller BH, McDearmon EL, Panda S et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104:3342–3347. doi: 10.1073/pnas.0611724104 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Morf J, Rey G, Schneider K et al (2012) Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338:379–383. doi: 10.1126/science.1217726 PubMedCrossRefGoogle Scholar
  81. Nagoshi E, Saini C, Bauer C et al (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705. doi:  10.1016/j.cell.2004.11.015 Google Scholar
  82. Nakahata Y, Kaluzova M, Grimaldi B et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340. doi: 10.1016/j.cell.2008.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Nam HJ, Boo K, Kim D et al (2014) Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting. Mol Cell 53:791–805. doi: 10.1016/j.molcel.2014.01.028 PubMedCrossRefGoogle Scholar
  84. Oda A, Katayose Y, YABUUCHI S et al (2009) Clock gene mouse period2 overexpression inhibits growth of human pancreatic cancer cells and has synergistic effect with cisplatin. Anticancer Res 29:1201–1209PubMedGoogle Scholar
  85. Ohno T, Onishi Y, Ishida N (2007) A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res 35:648–655. doi: 10.1093/nar/gkl868 PubMedCrossRefGoogle Scholar
  86. Paschos GK, FitzGerald GA (2010) Circadian clocks and vascular function. Circ Res 106:833–841. doi: 10.1161/CIRCRESAHA.109.211706 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Perin EC, Sanz-Ruiz R, Sánchez PL et al (2014) Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: The PRECISE Trial. Am Heart J 168:88–95.e2. doi: 10.1016/j.ahj.2014.03.022 PubMedCrossRefGoogle Scholar
  88. Preitner N, Damiola F, Lopez-Molina L et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260PubMedCrossRefGoogle Scholar
  89. Preußner M, Wilhelmi I, Schultz A-S et al (2014) Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol Cell 54:651–662. doi: 10.1016/j.molcel.2014.04.015 PubMedCrossRefGoogle Scholar
  90. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941PubMedCrossRefGoogle Scholar
  91. Rudic RD, McNamara P, Curtis A-M et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2, e377. doi: 10.1371/journal.pbio.0020377 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sack RL, Brandes RW, Kendall AR, Lewy AJ (2000) Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med 343:1070–1077. doi: 10.1056/NEJM200010123431503 PubMedCrossRefGoogle Scholar
  93. Sassone-Corsi P (2012) Minireview: NAD+, a circadian metabolite with an epigenetic twist. Endocrinology 153:1–5. doi: 10.1210/en.2011-1535 PubMedCrossRefGoogle Scholar
  94. Sato TK, Panda S, Miraglia LJ et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537. doi: 10.1016/j.neuron.2004.07.018 PubMedCrossRefGoogle Scholar
  95. Saxena MT, Aton SJ, Hildebolt C et al (2007) Bioluminescence imaging of period1 gene expression in utero. Mol Imaging 6:68–72PubMedGoogle Scholar
  96. Scheiermann C, Kunisaki Y, Frenette PS (2013) Circadian control of the immune system. Nat Rev Immunol 13:190–198. doi: 10.1038/nri3386 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shi S, Hida A, McGuinness OP et al (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20:316–321. doi: 10.1016/j.cub.2009.12.034 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Siepka SM, Yoo S-H, Park J et al (2007) Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–1023. doi: 10.1016/j.cell.2007.04.030 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sletvold O, Laerum OD (1988) Multipotent stem cell (CFU-S) numbers and circadian variations in aging mice. Eur J Haematol 41:230–236PubMedCrossRefGoogle Scholar
  100. Son GH, Chung S, Choe HK et al (2008) Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. Proc Natl Acad Sci U S A 105:20970–20975. doi: 10.1073/pnas.0806962106 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Stokkan KA, Yamazaki S, Tei H et al (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493. doi: 10.1126/science.291.5503.490 PubMedCrossRefGoogle Scholar
  102. Sun C-M, Huang S-F, Zeng J-M et al (2010) Per2 inhibits k562 leukemia cell growth in vitro and in vivo through cell cycle arrest and apoptosis induction. Pathol Oncol Res 16:403–411. doi: 10.1007/s12253-009-9227-0 PubMedCrossRefGoogle Scholar
  103. Taegtmeyer H (2000) Metabolism—the lost child of cardiology. J Am Coll Cardiol 36:1386–1388PubMedCrossRefGoogle Scholar
  104. Thomas HE, Redgrave R, Cunnington MS et al (2008) Circulating endothelial progenitor cells exhibit diurnal variation. Arterioscler Thromb Vasc Biol 28:e21–e22. doi: 10.1161/ATVBAHA.107.160317 PubMedCrossRefGoogle Scholar
  105. Tong X, Zhang D, Arthurs B et al (2015) Palmitate inhibits SIRT1-dependent BMAL1/CLOCK interaction and disrupts circadian gene oscillations in hepatocytes. PLoS One 10, e0130047. doi: 10.1371/journal.pone.0130047 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M (2006) Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12:89–98. doi: 10.1038/nm1339 PubMedCrossRefGoogle Scholar
  107. Tsai J-Y, Kienesberger PC, Pulinilkunnil T et al (2010) Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J Biol Chem 285:2918–2929. doi: 10.1074/jbc.M109.077800 PubMedCrossRefGoogle Scholar
  108. Ueda HR, Chen W, Adachi A et al (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534–539. doi: 10.1038/nature00906 PubMedCrossRefGoogle Scholar
  109. Umemura Y, Yoshida J, Wada M et al (2013) An in vitro ES cell-based clock recapitulation assay model identifies CK2α as an endogenous clock regulator. PLoS One 8, e67241. doi: 10.1371/journal.pone.0067241 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Umemura Y, Koike N, Matsumoto T et al (2014) Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. Proc Natl Acad Sci U S A 111(47):E5039–E5048. doi: 10.1073/pnas.1419272111 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Unsal-Kaçmaz K, Mullen TE, Kaufmann WK, Sancar A (2005) Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25:3109–3116. doi:  10.1128/MCB.25.8.3109-3116.2005 Google Scholar
  112. van Der Horst GT, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630. doi: 10.1038/19323 PubMedCrossRefGoogle Scholar
  113. Varcoe TJ, Wight N, Voultsios A et al (2011) Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat. PLoS One 6, e18504. doi: 10.1371/journal.pone.0018504 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Visser GH, Goodman JD, Levine DH, Dawes GS (1982) Diurnal and other cyclic variations in human fetal heart rate near term. Am J Obstet Gynecol 142:535–544PubMedCrossRefGoogle Scholar
  115. Vitaterna MH, Selby CP, Todo T et al (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A 96:12114–12119PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang C-Y, Wen M-S, Wang H-W et al (2008) Increased vascular senescence and impaired endothelial progenitor cell function mediated by mutation of circadian gene Per2. Circulation 118:2166–2173. doi: 10.1161/CIRCULATIONAHA.108.790469 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Westgate EJ, Cheng Y, Reilly DF et al (2008) Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117:2087–2095. doi: 10.1161/CIRCULATIONAHA.107.739227 PubMedCrossRefGoogle Scholar
  118. Wu X, Yu G, Parks H et al (2008) Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone 42:861–870. doi: 10.1016/j.bone.2007.12.226 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yagita K, Yamaguchi S, Tamanini F et al (2000) Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev 14:1353–1363PubMedPubMedCentralGoogle Scholar
  120. Yagita K, Tamanini F, Yasuda M et al (2002) Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J 21:1301–1314. doi: 10.1093/emboj/21.6.1301 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yagita K, Horie K, Koinuma S et al (2010) Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc Natl Acad Sci U S A 107:3846–3851. doi: 10.1073/pnas.0913256107 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yang X, Downes M, Yu RT et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810. doi: 10.1016/j.cell.2006.06.050 PubMedCrossRefGoogle Scholar
  123. Yasuhara N, Yamagishi R, Arai Y et al (2013) Importin alpha subtypes determine differential transcription factor localization in embryonic stem cells maintenance. Dev Cell 26:123–135. doi: 10.1016/j.devcel.2013.06.022 PubMedCrossRefGoogle Scholar
  124. Yoo S-H, Ko CH, Lowrey PL et al (2005) A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc Natl Acad Sci U S A 102:2608–2613. doi: 10.1073/pnas.0409763102 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yoo S-H, Mohawk JA, Siepka SM et al (2013) Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152:1091–1105. doi: 10.1016/j.cell.2013.01.055 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yu JM, Wu X, Gimble JM et al (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10:66–79. doi: 10.1111/j.1474-9726.2010.00646.x PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yu X, Rollins D, Ruhn KA et al (2013) TH17 cell differentiation is regulated by the circadian clock. Science 342:727–730. doi: 10.1126/science.1243884 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zvonic S, Ptitsyn AA, Kilroy G et al (2007) Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res 22:357–365. doi: 10.1359/jbmr.061114 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pieterjan Dierickx
    • 1
    • 2
  • Bastiaan Du Pré
    • 2
    • 3
  • Dries A. M. Feyen
    • 4
  • Niels Geijsen
    • 2
    • 5
  • Toon van Veen
    • 3
  • Pieter A. Doevendans
    • 1
  • Linda W. Van Laake
    • 1
    • 2
    Email author
  1. 1.Division of Heart and Lungs, Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Hubrecht Institute-KNAW and University Medical CenterUtrechtThe Netherlands
  3. 3.Division of Heart and Lungs, Department of Medical PhysiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  4. 4.Division Heart and Lung, Cardiology, Experimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrechtThe Netherlands
  5. 5.Faculty of Veterinary Medicine, Clinical Sciences of Companion AnimalsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations