Skip to main content

A 3-Valued Contraction Model Checking Game: Deciding on the World of Partial Information

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 9407)

Abstract

In this work we address the problem of model checking a desired property specified in Computation Tree Logic (CTL) in the presence of partial information. The Kripke Modal Transition System (KMTS) is used for modelling due its capacity to represent indefinitions explicitly which enables a KMTS interpretation as a set of Kripke structures. In this interpretation a specific model checking algorithm is required that can return one of the three possible values: true when all Kripke models of the set satisfy the property, false when no Kripke models of the set satisfy the property and indefinite when some models satisfy and others do not. To the best of our knowledge the literature lacks a KMTS model checking algorithm that fits this interpretation and in this paper we present an algorithm based on a game approach called a Contraction Model Checking algorithm for this purpose.

Keywords

  • Kripke Modal Transition System (KMTS)
  • Model checking game
  • Partial information

J.S. Ribeiro—This author is supported by the grant # 4576/2014, Bahia Research Foundation (FAPESB).

A. Andrade—This author is supported by the grant # 447178/2014-8, Brazilian Research Council (CNPq).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25423-4_6
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25423-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    Although the CTL semantics consider Kripke structures with total relation transition, such a requirement can be released and we assume a Kripke structure with a partial transition relation instead.

References

  1. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  2. Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT press, Cambridge (1999)

    Google Scholar 

  4. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  5. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning: Abstraction and refinement for the full \(\mu \)-calculus. Inf. Comput. 205(8), 1130–1148 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Guerra, P.T., Andrade, A., Wassermann, R.: Toward the revision of CTL models through Kripke modal transition systems. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195, pp. 115–130. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  7. Huth, M.: Model checking modal transition systems using Kripke structures. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 302–316. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  8. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: a foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  9. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge University Press, Cambridge (2004)

    CrossRef  MATH  Google Scholar 

  10. Kleene, S.C., de Bruijn, N., de Groot, J., Zaanen, A.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)

    Google Scholar 

  11. Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-valued abstraction-refinement. ACM Trans. Comput. Logic 9(1), 1 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Wehrheim, H.: Bounded model checking for partial Kripke structures. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 380–394. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jandson S. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ribeiro, J.S., Andrade, A. (2015). A 3-Valued Contraction Model Checking Game: Deciding on the World of Partial Information. In: Butler, M., Conchon, S., Zaïdi, F. (eds) Formal Methods and Software Engineering. ICFEM 2015. Lecture Notes in Computer Science(), vol 9407. Springer, Cham. https://doi.org/10.1007/978-3-319-25423-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25423-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25422-7

  • Online ISBN: 978-3-319-25423-4

  • eBook Packages: Computer ScienceComputer Science (R0)