Abstract
In this work we address the problem of model checking a desired property specified in Computation Tree Logic (CTL) in the presence of partial information. The Kripke Modal Transition System (KMTS) is used for modelling due its capacity to represent indefinitions explicitly which enables a KMTS interpretation as a set of Kripke structures. In this interpretation a specific model checking algorithm is required that can return one of the three possible values: true when all Kripke models of the set satisfy the property, false when no Kripke models of the set satisfy the property and indefinite when some models satisfy and others do not. To the best of our knowledge the literature lacks a KMTS model checking algorithm that fits this interpretation and in this paper we present an algorithm based on a game approach called a Contraction Model Checking algorithm for this purpose.
Keywords
- Kripke Modal Transition System (KMTS)
- Model checking game
- Partial information
J.S. Ribeiro—This author is supported by the grant # 4576/2014, Bahia Research Foundation (FAPESB).
A. Andrade—This author is supported by the grant # 447178/2014-8, Brazilian Research Council (CNPq).
This is a preview of subscription content, access via your institution.
Buying options




Notes
- 1.
Although the CTL semantics consider Kripke structures with total relation transition, such a requirement can be released and we assume a Kripke structure with a partial transition relation instead.
References
Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)
Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000)
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT press, Cambridge (1999)
Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)
Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning: Abstraction and refinement for the full \(\mu \)-calculus. Inf. Comput. 205(8), 1130–1148 (2007)
Guerra, P.T., Andrade, A., Wassermann, R.: Toward the revision of CTL models through Kripke modal transition systems. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195, pp. 115–130. Springer, Heidelberg (2013)
Huth, M.: Model checking modal transition systems using Kripke structures. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 302–316. Springer, Heidelberg (2002)
Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: a foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)
Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge University Press, Cambridge (2004)
Kleene, S.C., de Bruijn, N., de Groot, J., Zaanen, A.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)
Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-valued abstraction-refinement. ACM Trans. Comput. Logic 9(1), 1 (2007)
Wehrheim, H.: Bounded model checking for partial Kripke structures. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 380–394. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ribeiro, J.S., Andrade, A. (2015). A 3-Valued Contraction Model Checking Game: Deciding on the World of Partial Information. In: Butler, M., Conchon, S., Zaïdi, F. (eds) Formal Methods and Software Engineering. ICFEM 2015. Lecture Notes in Computer Science(), vol 9407. Springer, Cham. https://doi.org/10.1007/978-3-319-25423-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-25423-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25422-7
Online ISBN: 978-3-319-25423-4
eBook Packages: Computer ScienceComputer Science (R0)