Advertisement

A 3-Valued Contraction Model Checking Game: Deciding on the World of Partial Information

  • Jandson S. Ribeiro
  • Aline Andrade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9407)

Abstract

In this work we address the problem of model checking a desired property specified in Computation Tree Logic (CTL) in the presence of partial information. The Kripke Modal Transition System (KMTS) is used for modelling due its capacity to represent indefinitions explicitly which enables a KMTS interpretation as a set of Kripke structures. In this interpretation a specific model checking algorithm is required that can return one of the three possible values: true when all Kripke models of the set satisfy the property, false when no Kripke models of the set satisfy the property and indefinite when some models satisfy and others do not. To the best of our knowledge the literature lacks a KMTS model checking algorithm that fits this interpretation and in this paper we present an algorithm based on a game approach called a Contraction Model Checking algorithm for this purpose.

Keywords

Kripke Modal Transition System (KMTS) Model checking game Partial information 

References

  1. 1.
    Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  2. 2.
    Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  3. 3.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT press, Cambridge (1999) Google Scholar
  4. 4.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  5. 5.
    Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning: Abstraction and refinement for the full \(\mu \)-calculus. Inf. Comput. 205(8), 1130–1148 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guerra, P.T., Andrade, A., Wassermann, R.: Toward the revision of CTL models through Kripke modal transition systems. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195, pp. 115–130. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Huth, M.: Model checking modal transition systems using Kripke structures. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 302–316. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  8. 8.
    Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: a foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  9. 9.
    Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. Cambridge University Press, Cambridge (2004) CrossRefzbMATHGoogle Scholar
  10. 10.
    Kleene, S.C., de Bruijn, N., de Groot, J., Zaanen, A.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)Google Scholar
  11. 11.
    Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-valued abstraction-refinement. ACM Trans. Comput. Logic 9(1), 1 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wehrheim, H.: Bounded model checking for partial Kripke structures. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 380–394. Springer, Heidelberg (2008) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Distributed Systems Laboratory (LaSiD) Computer Science Department – Mathematics InstituteFederal University of BahiaSalvadorBrazil

Personalised recommendations