Skip to main content

Physical Model for Interfacial Carrier Dynamics

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

  • 3024 Accesses

Abstract

This chapter reviews interfacial carrier dynamics in power convergence processes of organic solar cells and dye-sensitized solar cells from the standpoint of chemical reactions. To this end, three models are reviewed for organics solar cells along with recent studies. The first model is chemical kinetics based on reaction rates estimated by Marcus theory . The second model is chemical dynamics, where quantum dynamics is introduced to understand charge carrier dynamics as chemical dynamics. The third one is a modeling of photovoltaic devices to reproduce and consider power convergence efficiencies based on drift and diffusion dynamics of carriers. For dye-sensitized solar cells, theoretical models for electron transfer from dyes to TiO2 and charge recombination due to internal conversion are reviewed. Through reviews of these different models, we discuss current understanding and remaining problems, which should be addressed in the future, of carrier dynamics in power convergence of organic solar cells and dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakulin AA, Martyanov DS, Paraschuk DYu, Pshenichnikov MS, van Loosdrecht PHM (2008) Ultrafast charge photogeneration dynamics in ground-state charge-transfer complexes based on conjugated polymers. J Phys Chem B 112:13730–13737

    Article  Google Scholar 

  2. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys 24:966–978

    Article  Google Scholar 

  3. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  Google Scholar 

  4. Marcus RA (1993) Electron transfer reactions in chemistry. theory and experiment. Rev Mod Phys 65:599–610

    Article  Google Scholar 

  5. Haken H (1978) Synergetics: an introduction. nonequilibrium phase transitions and self-organization in physics, chemistry, and biology, 2nd edn. Springer, ISBN: 978-3-642-96471-8

    Google Scholar 

  6. Haken H (1983) Advanced synergetics: instability hierarchies of self-organizing systems and devices. In: Springer Series in Synergetics, vol 20, ISBN: 978-3-642-45553-7

    Google Scholar 

  7. Cave RJ, Newton MD (1996) Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem Phys Lett 249:15

    Article  Google Scholar 

  8. Cave RJ, Newton MD (1997) Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods. J Chem Phys 106:9213–9226

    Article  Google Scholar 

  9. Farazdel A, Dupuis M, Clementi E, Aviram A (1990) Electric-field induced intramolecular electron transfer in spiro.pi.-electron systems and their suitability as molecular electronic devices. a theoretical study. J Am Chem Soc 112:4206–4214

    Article  Google Scholar 

  10. Dederichs PH, Blügel S, Zeller R, Akai H (1984) Ground states of constrained systems: application to cerium impurities. Phys Rev Lett 53:2512–2515

    Article  Google Scholar 

  11. Wu Q, Van Voorhis T (2005) Direct optimization method to study constrained systems within density-functional theory. Phys Rev A 72:024502–024502-4

    Google Scholar 

  12. Wu Q, Van Voorhis T (2006) Direct calculation of electron transfer parameters through constrained density functional theory. J Phys Chem A 110:9212–9218

    Article  Google Scholar 

  13. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477

    Article  MATH  Google Scholar 

  14. van Hal PA, Meskers SCJ, Janssen RAJ (2004) Photoinduced energy and electron transfer in oligo(p-phenylene vinylene)-fullerene dyads. J Appl Phys A 79:41–46

    Article  Google Scholar 

  15. Lemaur V, Steel M, Beljonne D, Brédas J-L, Cornil J (2005) Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: a full quantum-chemical treatment. J Am Chem Soc 127:6077–6086

    Article  Google Scholar 

  16. Kawatsu T, Coropceanu V, Ye A, Brédas J-L (2008) Quantum-chemical approach to electronic coupling: application to charge separation and charge recombination pathways in a model molecular donor–acceptor system for organic solar cells. J Phys Chem C 112:3429

    Article  Google Scholar 

  17. Yi Y, Coropceanu V, Bréas J-L (2009) Exciton-dissociation and charge-recombination processes in pentacene/c60 solar cells: theoretical insight into the impact of interface geometry. J Am Chem Soc 131:15777–15783

    Article  Google Scholar 

  18. Liu T, Cheung DL, Troisi A (2011) Structural variability and dynamics of the P3HT/PCBM interface and its effects on the electronic structure and the charge-transfer rates in solar cells. Phys Chem Chem Phys 13:21461–21470

    Article  Google Scholar 

  19. Kanai Y, Grossman JC (2007) Insights on interfacial charge transfer across P3HT/Fullerene photovoltaic heterojunction from Ab initio calculations. Nano Lett 7:1967–1972

    Article  Google Scholar 

  20. Li Z, Zhang X, Lu G (2011) Electron structure and dynamics at poly(3-hexylthiophene)/fullerene photovoltaic heterojunctions. Appl Phys Lett 98:083303–083303-3

    Google Scholar 

  21. Veldman D, İpek Ö, Meskers SCJ, Sweelssen J, Koetse MM, Veenstra SC, Kroon JM, van Bavel SS, Loos J, Janssen RAJ (2008) Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. J Am Chem Soc 130:7721–7735

    Article  Google Scholar 

  22. Guo J, Ohkita H, Benten H, Ito S (2010) Charge generation and recombination dynamics in Poly(3-hexylthiophene)/Fullerene blend films with different regioregularities and morphologies. J Am Chem Soc 132:6154–6164

    Article  Google Scholar 

  23. Bakulin AA, Rao A, Pavelyev VG, van Loosdrecht PHM, Pshenichnikov MS, Niedzialek D, Cornil J, Beljonne D, Friend RH (2012) The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335:1340–1344

    Article  Google Scholar 

  24. Fujii M, Yamashita K (2011) Packing effects in organic donor-acceptor molecular heterojunctions. Chem Phys Lett 514:146–150

    Article  Google Scholar 

  25. Carmichael HJ (1999) Statistical methods in quantum optics 1: master equations and Fokker-Planck equations. Springer, Berlin. ISBN 978-3-662-03875-8)

    Book  MATH  Google Scholar 

  26. Meyer H-D, Gatti F, Worth GA (2009) Multidimensional quantum dynamics: MCTDH theory and applications. Wiley, ISBN: 978-3-527-32018-9

    Google Scholar 

  27. Tamura H, Burghardt I, Tsukada M (2011) Exciton dissociation at Thiophene/Fullerene interfaces: the electronic structures and quantum dynamic. J Phys Chem C 115:10205–10210

    Article  Google Scholar 

  28. Tamura H, Marinazzo R, Ruckenbauer M, Burghardt I (2012) Quantum dynamics of ultrafast charge transfer at a polymer-fullerene interface. J Chem Phys 137:22A540– 22A54-7

    Google Scholar 

  29. Jailaubekov AE, Willard AP, Tritsch JR, Chan W-L, Sai N, Gearba R, Kaake LG, Williams KJ, Leung K, Rossky PJ, Zhu X-Y (2013) Nat Mater 12:66

    Article  Google Scholar 

  30. Lobaugh J, Rossky PJ (1999) Computer simulation of the excited state dynamics of betaine-30 in acetonitrile. J Phys Chem A 103:9432–9447

    Article  Google Scholar 

  31. Sterpone F, Bedard-Hearn MJ, Rossky PJ (2010) Nonadiabatic simulations of exciton dissociation in poly-p-phenylenevinylene oligomers. J Phys Chem A 114:7661–7670

    Article  Google Scholar 

  32. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72:085205

    Article  Google Scholar 

  33. Watkins PK, Walker AB, Verschoor GLB (2005) Dynamical monte carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. Nano Lett 5:1814–1818

    Article  Google Scholar 

  34. Frost JM, Cheynis F, Tuladhar SM (2006) Influence of polymer-blend morphology on charge transport and photocurrent generation in donor–acceptor polymer blends. J Nelson Nano Lett 6:1674–1681

    Article  Google Scholar 

  35. Meng L, Wang D, Li Q, Yi Y, Brédas J-L, Shuai Z (2011) An improved dynamic Monte Carlo model coupled with Poisson equation to simulate the performance of organic photovoltaic devices. J Chem Phys 134:124102–124102-7

    Google Scholar 

  36. Ray B, Nair PR, Alam MA (2011) Annealing dependent performance of organic bulk-heterojunction solar cells: a theoretical perspective. Sol Energy Mater Sol Cells 95:3287–3294

    Article  Google Scholar 

  37. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-Sensitized solar cells. Chem Rev 110:6595–6663

    Article  Google Scholar 

  38. O’Regan B, Grätzel M (1991) A low–cost, high–efficiency solar cell based on dye–sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  39. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye–sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  Google Scholar 

  40. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  Google Scholar 

  41. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723

    Article  Google Scholar 

  42. Peter LM (2007) Dye–sensitized nanocrystalline solar cells. Phys Chem Chem Phys 9:2630–2642

    Article  Google Scholar 

  43. Rabi II (1937) Space quantization in a gyrating magnetic field. Phys Rev 51:652–654

    Article  Google Scholar 

  44. Robinson GW, Frosch RP (1962) Theory of electronic energy relaxation in the solid phase. J Chem Phys 37:1962–1973

    Article  Google Scholar 

  45. Bixon M, Jortner J (1968) Intramolecular radiationless transitions. J Chem Phys 48:715–726

    Article  Google Scholar 

  46. Desilvestro J, Grätzel M, Kavan L, Moser J (1985) Highly efficient sensitization of titanium dioxide. J Am Chem Soc 107:2988–2990

    Article  Google Scholar 

  47. Anderson S, Constable EC, Dare-Edwards MP, Goodenough JB, Hamnett A, Seddon KR, Wright RD (1979) Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitization without a supersensitiser. Nature 280:572–573

    Google Scholar 

  48. O’Regan B, Moser J, Anderson M, Grätzel M (1990) Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dyamics of light-induced charge separation. J Phys Chem 94:8720–8726

    Article  Google Scholar 

  49. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis–XzBis (2,2’–bipyridyl–4,4’–dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390

    Article  Google Scholar 

  50. Wenger B, Grätzel M, Moser J-E (2005) Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. J Am Chem Soc 127:12150–12151

    Article  Google Scholar 

  51. Clark WDK, Sutin N (1977) Spectral sensitization of n–Type TiO2 electrodes by polypyridineruthenium (II) complexes. J Am Chem Soc 99:4676–4682

    Article  Google Scholar 

  52. Watson DF, Meyer GJ (2005) Electron injection at dye-sensitized semiconductor electrodes. Annu Rev Phys Chem 56:119

    Article  Google Scholar 

  53. Huber R, Moser J-E, Grätzel M, Wachtveitl J (2002) Real-Time observation of photoinduced adiabatic electron transfer in strongly coupled dye/semiconductor colloidal systems with a 6 fs time constant. J Phys Chem B 106:6494–6499

    Article  Google Scholar 

  54. Yonehara T, Hanasaki K, Takatsuka K (2012) Fundamental approaches to nonadiabaticity: towards a chemical theory beyond the born-oppenheimer paradigm. Chem Rev 112:499–542

    Article  Google Scholar 

  55. Duncan WR, Stier WM, Prezhdo OV (2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin–tio2 interface. J Am Chem Soc 127:7941–7951

    Article  Google Scholar 

  56. Jono R, Fujisawa J, Segawa H, Yamashita K (2011) Theoretical study of the surface complex between TiO2 and TCNQ showing interfacial charge transfer transitions. J Phys Chem Lett 2:1167–1170

    Article  Google Scholar 

  57. Segawa H, Fujisawa J, Kubo T, Uchida S (2009) Composite material for photoelectric conversion material, contains cyano group–containing compound or its reduced form salt exhibiting absorption characteristics at different wavelength region with respect to metal oxide, Japan WO2009110618–A1, EP2249430–A1, US2011011459–A1

    Google Scholar 

  58. Jono R, Fujisawa J, Segawa H, Yamashita K (2013) The Origin of the strong interfacial charge-transfer absorption in the surface complex between TiO2 and dicyanomethylene compounds. Phys Chem Chem Phys 5:18584–18588

    Article  Google Scholar 

  59. Niu Y, Peng Q, Deng C, Gao X, Shuai Z (2010) Theory of excited state decays and optical spectra: application to polyatomic molecules. J Phys Chem A 114:7817–7831

    Article  Google Scholar 

  60. Manzhos S, Segawa H, Yamashita K (2011) A model for recombination in Type II dye–sensitized solar cells: Catechol–thiophene dyes. Chem Phys Lett 504:230–235

    Article  Google Scholar 

  61. Manzhos S, Jono R, Yamashita K, Fujisawa J, Nagata M, Segawa H (2011) Study of interfacial charge transfer bands and electron recombination in the surface complexes of TCNE, TCNQ, and TCNAQ with TiO2. J Phys Chem C 115:21487–21493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fujii, M., Jono, R., Yamashita, K. (2016). Physical Model for Interfacial Carrier Dynamics. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics