Skip to main content

Semiconductor-Based Photocatalytic Water Splitting

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

Solar to chemical energy conversion from water by powdered photocatalyst is one of the most promising approaches. In this chapter, we will introduce some bases of photocatalytic water splitting, and key issues and challenges for solar water splitting. At the same time, the basic mechanism, processes, reaction systems as well as strategies for light absorption, charge separation and catalytic conversion will be summarized and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  2. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  Google Scholar 

  3. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165

    Article  Google Scholar 

  4. Ma G, Yan H, Shi J, Zong X, Lei Z, Li C (2008) Direct splitting of H2S into H2and S on CdS-based photocatalyst under visible light irradiation. J Catal 260:134

    Article  Google Scholar 

  5. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176

    Article  Google Scholar 

  6. Yang Y, Chen QY, Yin ZL, Li J (2009) Study on the photocatalytic activity of K2La2Ti3O10 doped with zinc(Zn). Appl Surf Sci 255:8419

    Article  Google Scholar 

  7. Fujihara K, Ohno T, Matsumura M (1998) Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. J Chem Soc, Faraday Trans 94:3705

    Article  Google Scholar 

  8. He CH, Yang OB (2003) Hydrogen evolution by photocatalytic decomposition of water under UV irradiation over K[Bi3PbTi5O16] perovskite: effect of cerium species. Ind Eng Chem Res 42:419

    Article  Google Scholar 

  9. Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33:1348

    Article  Google Scholar 

  10. Lee SG, Lee S, Lee HI (2001) Photocatalytic production of hydrogen from aqueous solution containing CN as a hole scavenger. Appl Catal A 207:173

    Article  Google Scholar 

  11. Wei Y, Li J, Huang Y, Huang M, Lin J, Wu J (2009) Photocatalytic water splitting with in-doped H2LaNb2O7 composite oxide semiconductors. Sol Energy Mater Sol Cells 93:1176

    Article  Google Scholar 

  12. Liu M, You W, Lei Z, Zhou G, Yang J, Wu G, Ma G, Luan G, Takata T, Hara M, Domen K, Li C (2004) Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem Commun 19:2192

    Article  Google Scholar 

  13. Choi J, Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2008) Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light. J Mater Chem 18:2371

    Article  Google Scholar 

  14. Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94

    Article  Google Scholar 

  15. Li YX, Lu GX, Li SB (2003) Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere 52:843

    Article  Google Scholar 

  16. Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc, Faraday Trans 81:1237

    Google Scholar 

  17. Sayama K, Arakawa H (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO2 catalyst, J Chem Soc, Faraday Trans 93:1647

    Google Scholar 

  18. Domen K, Naito S, Soma S, Onishi M, Tamaru K (1980) Photocatalytic decomposition of water vapour on an NiO-SrTiO3 Catalyst J Chem Soc, Chem Commun 543

    Google Scholar 

  19. Takata T, Furumi Y, Shinohara K, Tanaka A, Hara M, Kondo JN, Domen K (1997) Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. Chem Mater 9:1063

    Article  Google Scholar 

  20. Reddy VR, Hwang DW, Lee JS (2003) Effect of Zr substitution for Ti in KLaTiO4 for photocatalytic water splitting. Catal Lett 90:39

    Article  Google Scholar 

  21. Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for Water Splitting into H2 and O2. J Phys Chem B 110:2219

    Article  Google Scholar 

  22. Domen K, Kudo A, Tanaka A, Onishi T (1990) Overall photodecomposition of water on a layered niobiate catalyst. Catal Today 8:77

    Article  Google Scholar 

  23. Miseki Y, Kato H, Kudo A (2006) Water splitting into H2 and O2 over Ba5Nb4O15 photocatalysts with layered perovskite structure prepared by polymerizable complex method. Chem Lett 35:1052

    Article  Google Scholar 

  24. Kurihara T, Okutomi H, Miseki Y, Kato H, Kudo A (2006) Highly efficient water splitting over K3Ta3B2O12 photocatalyst without loading cocatalyst. Chem Lett 35:274–275

    Article  Google Scholar 

  25. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 Photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089

    Article  Google Scholar 

  26. Yoshino M, Kakihana M, Cho WS, Kato H, Kudo A (2002) Polymerizable complex synthesis of pure Sr2NbxTa2-xO7 solid solutions with high photocatalytic activities for water decomposition into H2 and O2. Chem Mater 14:3369–3376

    Article  Google Scholar 

  27. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861

    Article  Google Scholar 

  28. Maeda K, Teramura K, Domen K (2008) Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light. J Catal 254:198–204

    Article  Google Scholar 

  29. Tang XD, Ye HQ, Liu H, Ma CX, Zhao Z (2009) A novel visible-light-driven photocatalyst Sm2InNbO7 for H2 or O2 evolution. Chem Phys Lett 484:48–53

    Article  Google Scholar 

  30. Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z, Liu Y, Withers RL (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9:559–564

    Article  Google Scholar 

  31. Ritterskamp P, Kuklya A, Wu¨stkamp MA, Kerpen K, Weidenthaler C, Demuth A (2007) A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation—reversible storage of oxygen and hydrogen. Angew Chem Int Ed 46:7770–7774

    Article  Google Scholar 

  32. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  Google Scholar 

  33. Yeh TF, Syu JM, Cheng C, Chang TH, Teng H (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater 20:2255–2262

    Article  Google Scholar 

  34. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C (2013) Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4. Nat Commun 4:1432

    Article  Google Scholar 

  35. Zhang F, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134:8348–8351

    Article  Google Scholar 

  36. Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811

    Article  Google Scholar 

  37. Hu CC, Nian JN (2008) Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol Energy Mater Sol Cells 92:1071–1076

    Article  Google Scholar 

  38. Zhang J, Xu Q (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 120:1766–1769

    Google Scholar 

  39. Wang X, Xu Q (2012) Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3. Angew Chem Int Ed 51:13089–13902

    Article  Google Scholar 

  40. Maeda K, Teramura K (2006) Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew Chem Int Ed 45:7806–7809

    Article  Google Scholar 

  41. Zong X, Yan H (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalystunder visible light irradiation. J Am Chem Soc 130:7176–7177

    Article  Google Scholar 

  42. Tabata M, Maeda K (2010) Photocatalytic hydrogen evolution from water using copper gallium sulfide under visible-light irradiation. J Phys Chem C 114:11215–11220

    Article  Google Scholar 

  43. Jang JS, Ham DJ (2008) Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl Catal A 346:149–154

    Article  Google Scholar 

  44. Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46:2355–2364

    Article  MathSciNet  Google Scholar 

  45. Wang W, Chen J (2014) Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat Commun 5:4647

    Google Scholar 

  46. Yan H, Yang J (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdSphotocatalyst. J Catal 266:165–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, F., Li, C. (2016). Semiconductor-Based Photocatalytic Water Splitting. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics