Skip to main content

CO2 Reduction by Photoelectrochemistry

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

CO2 reduction using sunlight energy is one of the ultimate methods for addressing issues related to global warming and a fossil fuel shortage, and constructing a carbon-neutral society in the future. Therefore, the amount of research in this field has been increasing in the 2010s. Photoelectrochemical CO2 reduction is generally conducted using a semiconductor or a combination of a semiconductor and cocatalyst. Material design and systematic utilization of semiconductors are thus important for effective use of solar photons. In addition, the CO2 molecule is highly stable; therefore, catalyst design is much more important than in the case for hydrogen generation by water splitting. In this chapter, the methodology for the catalysis of CO2 reduction by photoelectrochemical means is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz HA, Dodson RW (1989) Reduction potentials of CO -2 and the alcohol radicals. J Phys Chem 93:409–414

    Article  Google Scholar 

  2. Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115

    Google Scholar 

  3. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 238:637–638

    Article  Google Scholar 

  4. Hori Y, Kikuchi K, Murata A, Suzuki S (1986) Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem Lett 6:897–898

    Article  Google Scholar 

  5. Hori Y, Murata A, Takahashi R, Suzuki S (1987) Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J Am Chem Soc 109:5022–5023

    Google Scholar 

  6. Christina LW, Kanan MW (2012) CO2 reduction at low overpotential on cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234

    Article  Google Scholar 

  7. Nakato Y, Tsubomura H (1992) Silicon photoelectrodes modified with ultrafine metal islands. Electrochim Acta 37:897–907

    Article  Google Scholar 

  8. Kumar B, Smieja JM, Kubiak CP (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-Bu′)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem C 114:14220–14223

    Article  Google Scholar 

  9. Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344

    Article  Google Scholar 

  10. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew Chem Int Ed 49:5101–5105

    Article  Google Scholar 

  11. Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T (2010) Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem Commun 46:6944–6946

    Article  Google Scholar 

  12. Sato S, Morikawa T, Kajino T, Ishitani O (2013) A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew Chem Int Ed 125:1022–1026

    Article  Google Scholar 

  13. Sato S, Arai T, Morikawa T, Uemura K, Suzuki TM, Tanaka H, Kajino T (2011) Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J Am Chem Soc 133:15240–15243

    Article  Google Scholar 

  14. Arai T, Sato S, Kajino T, Morikawa T (2013) Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy Environ Sci 6:1274–1282

    Article  Google Scholar 

  15. Lehn JM, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci 79:701–704

    Article  Google Scholar 

  16. Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+: effect of pH on the formation of CO and HCOO−. Organometallics 6:181–186

    Article  Google Scholar 

  17. Chardon-Noblat S, Deronzier A, Ziessel R, Zsoldos D (1998) Electroreduction of CO2 catalyzed by polymeric [Ru(bpy)(CO)2]. films in aqueous media: parameters influencing the reaction selectivity. J Electroanal Chem 444:253–260

    Article  Google Scholar 

  18. Yang CC, Yu YH, Linden B, Wu JCS, Mul G (2010) Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? J Am Chem Soc 132:8398–8406

    Article  Google Scholar 

  19. Yui T, Kan A, Saitoh C, Koike K, Ibusuki T, Ishitani O (2011) Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl Mater Interfaces 3:2594–2600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Morikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morikawa, T. (2016). CO2 Reduction by Photoelectrochemistry. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics