Photoelectrochemical Approach for Water Splitting

  • Joel W. Ager
Part of the Lecture Notes in Energy book series (LNEN, volume 32)


The splitting of liquid water into hydrogen and water via photoelectrochemical (PEC) approaches is described. If sunlight is used as the illumination source, the overall process provides a means to convert solar power into chemical energy. PEC water splitting is the direct coupling of the following processes: (1) absorption of solar light in a material and the creation of electrons and holes, (2) transport of electrons and holes to the absorber/water interface, and (3) evolution of hydrogen from the electrons and oxygen from the holes, often with the assistance of catalysts. The distinctions between this process and the related approach of coupling photovoltaic (PV) elements to hydrogen evolution (HER) and oxygen evolution (OER) catalysts will be discussed. The history of research on PEC water splitting dating back to its discovery in the early 1970s is summarized. The basic design principles of PEC water splitting device, with an emphasis on the type and number of PV absorbing elements are discussed and state of the art demonstrations are summarized.


Solar Cell Water Splitting Hydrogen Evolution Reaction Oxygen Evolution Reaction Light Absorber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.


  1. 1.
    Ciamician G (1912) The photochemistry of the future. Science 36:385–394. doi: 10.1126/science.36.926.385 CrossRefGoogle Scholar
  2. 2.
    Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew Sustain Energy Rev 15:1–23. doi: 10.1016/j.rser.2010.07.014 CrossRefGoogle Scholar
  3. 3.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRefGoogle Scholar
  4. 4.
    Turner JA (2004) Sustainable hydrogen production. Science (80-) 305:972–974. doi: 10.1126/science.1103197
  5. 5.
    Barbir F (2005) PEM fuel cells: theory and practice. Theory Pract. doi: 10.1016/B978-012078142-3/50013-6 Google Scholar
  6. 6.
    Wang Y, Chen KS, Mishler J et al (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007. doi: 10.1016/j.apenergy.2010.09.030 CrossRefGoogle Scholar
  7. 7.
    Edwards PP, Kuznetsov VL, David WIF, Brandon NP (2008) Hydrogen and fuel cells: towards a sustainable energy future. Energy Policy 36:4356–4362. doi: 10.1016/j.enpol.2008.09.036 CrossRefGoogle Scholar
  8. 8.
    Evans A, Strezov V, Evans TJ (2012) Assessment of utility energy storage options for increased renewable energy penetration. Renew Sustain Energy Rev 16:4141–4147. doi: 10.1016/j.rser.2012.03.048 CrossRefGoogle Scholar
  9. 9.
    Lewis NS (2001) Frontiers of research in photoelectrochemical solar energy conversion. J Electroanal Chem 508:1–10. doi: 10.1016/S0022-0728(01)00399-0 CrossRefGoogle Scholar
  10. 10.
    Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446CrossRefGoogle Scholar
  11. 11.
    Nielander AC, Shaner MR, Papadantonakis KM et al (2015) A taxonomy for solar fuels generators. Energy Environ Sci 8:16–25. doi: 10.1039/C4EE02251C CrossRefGoogle Scholar
  12. 12.
    Bak T, Nowotny J, Rekas M, Sorrell C (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy 27:991–1022. doi: 10.1016/S0360-3199(02)00022-8 CrossRefGoogle Scholar
  13. 13.
    Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661. doi: 10.1021/jz1007966 CrossRefGoogle Scholar
  14. 14.
    Kudo A (2007) Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int J Hydrog Energy 32:2673–2678. doi: 10.1016/j.ijhydene.2006.09.010 CrossRefGoogle Scholar
  15. 15.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278. doi: 10.1039/b800489g CrossRefGoogle Scholar
  16. 16.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570. doi: 10.1021/cr1001645 CrossRefGoogle Scholar
  17. 17.
    Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54. doi: 10.1021/cm7024203 CrossRefGoogle Scholar
  18. 18.
    Chen Z, Jaramillo TF, Deutsch TG et al (2010) Review: accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res 25:3–16. doi: 10.1557/JMR.2010.0020 CrossRefGoogle Scholar
  19. 19.
    Dotan H, Mathews N, Hisatomi T et al (2014) On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J Phys Chem Lett 5:3330–3334. doi: 10.1021/jz501716g CrossRefGoogle Scholar
  20. 20.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  21. 21.
    Wrighton MS, Ellis AB, Wolczanski PT et al (1976) Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J Am Chem Soc 98:2774–2779. doi: 10.1021/ja00426a017 CrossRefGoogle Scholar
  22. 22.
    Nozik AJ (1976) p-n photoelectrolysis cells. Appl Phys Lett 29:150–153. doi: 10.1063/1.89004 CrossRefGoogle Scholar
  23. 23.
    Kainthla RC (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Electrochem Soc 134:841. doi: 10.1149/1.2100583 CrossRefGoogle Scholar
  24. 24.
    Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science (80-) 280:425–427. doi: 10.1126/science.280.5362.425
  25. 25.
    Golbeck JH (2006) Photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase. Springer, DordrechtGoogle Scholar
  26. 26.
    Wydrzynski T, Satoh K (2006) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Photosynth Res. doi: 10.1007/s11120-006-9035-2 Google Scholar
  27. 27.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. doi: 10.1063/1.1736034 CrossRefGoogle Scholar
  28. 28.
    Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316:495–500. doi: 10.1038/316495a0 CrossRefGoogle Scholar
  29. 29.
    Weber M, Dignam M (1986) Splitting water with semiconducting photoelectrodes—Efficiency considerations. Int J Hydrogen Energy 11:225–232. doi: 10.1016/0360-3199(86)90183-7 CrossRefGoogle Scholar
  30. 30.
    Licht S (2001) Multiple band gap semiconductor/electrolyte solar energy conversion. J Phys Chem B 105:6281. doi: 10.1021/jp010552j CrossRefGoogle Scholar
  31. 31.
    Döscher H, Geisz J, Deutsch T, Turner J (2014) Sunlight absorption in water−efficiency and design implications for photoelectrochemical devices. Energy Environ Sci 7:2951–2956. doi: 10.1039/c4ee01753f CrossRefGoogle Scholar
  32. 32.
    Hu S, Xiang C, Haussener S et al (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993CrossRefGoogle Scholar
  33. 33.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi: 10.1038/35104607 CrossRefGoogle Scholar
  34. 34.
    Chen S, Wang L-W (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666. doi: 10.1021/cm302533s CrossRefGoogle Scholar
  35. 35.
    Walukiewicz W (2001) Intrinsic limitations to the doping of wide-gap semiconductors. Phys B Condens Matter 302–303:123–134. doi: 10.1016/S0921-4526(01)00417-3 CrossRefGoogle Scholar
  36. 36.
    Van de Walle CG, Neugebauer J (2003) Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423:626–628. doi: 10.1038/nature01665 CrossRefGoogle Scholar
  37. 37.
    Fujishima A (1975) Hydrogen production under sunlight with an electrochemical photocell. J Electrochem Soc 122:1487. doi: 10.1149/1.2134048 CrossRefGoogle Scholar
  38. 38.
    Yoneyama H, Sakamoto H, Tamura H (1975) A Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction. Electrochim Acta 20:341–345. doi: 10.1016/0013-4686(75)90016-X CrossRefGoogle Scholar
  39. 39.
    Ohashi K, McCann J, Bockris JO (1977) Stable photoelectrochemical cells for the splitting of water. Nature 266:610. doi: 10.1038/266610a0 CrossRefGoogle Scholar
  40. 40.
    Kohl PA, Frank SN, Bard AJ (1977) Semiconductor electrodes. J Electrochem Soc 124:225. doi: 10.1149/1.2133270 CrossRefGoogle Scholar
  41. 41.
    Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem Interfacial Electrochem 82:133–143. doi: 10.1016/S0022-0728(77)80253-2 CrossRefGoogle Scholar
  42. 42.
    Delahoy AE, Gau SC, Murphy OJ et al (1985) A one-unit photovoltaic electrolysis system based on a triple stack of amorphous silicon (pin) cells. Int J Hydrogen Energy 10:113–116. doi: 10.1016/0360-3199(85)90043-6 CrossRefGoogle Scholar
  43. 43.
    Lin GH, Kapur M, Kainthla RC, Bockris JOM (1989) One step method to produce hydrogen by a triple stack amorphous silicon solar cell. Appl Phys Lett 55:386–387. doi: 10.1063/1.101879 CrossRefGoogle Scholar
  44. 44.
    Gramaccioni C, Selvaggi A, Galluzzi F (1993) Thin film multi-junction solar cell for water photoelectrolysis. Electrochim Acta 38:111–113. doi: 10.1016/0013-4686(93)80016-S CrossRefGoogle Scholar
  45. 45.
    Rocheleau RE, Miller EL, Misra A (1998) High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12:3–10. doi: 10.1021/ef9701347 CrossRefGoogle Scholar
  46. 46.
    Khaselev O, Bansal A, Turner JA (2001) High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energy 26:127–132. doi: 10.1016/S0360-3199(00)00039-2 CrossRefGoogle Scholar
  47. 47.
    Reece SY, Hamel JA, Sung K et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science (80-) 334:645–648. doi: 10.1126/science.1209816
  48. 48.
    Appleby AJ, Delahoy AE, Gau SC et al (1985) An amorphous silicon-based one-unit photovoltaic electrolyzer. Energy 10:871–876. doi: 10.1016/0360-5442(85)90120-3 CrossRefGoogle Scholar
  49. 49.
    Sakai Y, Sugahara S, Matsumura M et al (1988) Photoelectrochemical water splitting by tandem type and heterojunction amorphous silicon electrodes. Can J Chem 66:1853–1856. doi: 10.1139/v88-299 CrossRefGoogle Scholar
  50. 50.
    Licht S, Wang B, Mukerji S et al (2000) Efficient solar water splitting, exemplified by RuO 2—catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B 104:8920–8924. doi: 10.1021/jp002083b CrossRefGoogle Scholar
  51. 51.
    Brillet J, Yum J-H, Cornuz M et al (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Phot 6:824–828CrossRefGoogle Scholar
  52. 52.
    Abdi FF, Han L, Smets AHM et al (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195. doi: 10.1038/ncomms3195 CrossRefGoogle Scholar
  53. 53.
    Han L, Abdi FF, van de Krol R et al (2014) Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar Cells. ChemSusChem 7:2832–2838. doi: 10.1002/cssc.201402456 CrossRefGoogle Scholar
  54. 54.
    Sabba D, Mulmudi HK et al (2015) Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett 150330053659007. doi: 10.1021/acs.nanolett.5b00616
  55. 55.
    Bornoz P, Abdi FF, Tilley SD et al (2014) A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118:16959–16966. doi: 10.1021/jp500441h CrossRefGoogle Scholar
  56. 56.
    Liu C, Tang J, Chen HM et al (2013) A fully integrated nanosystem of semiconductor nanowires for direct solar water Splitting. Nano Lett 13:2989–2992. doi: 10.1021/nl401615t CrossRefGoogle Scholar
  57. 57.
    Shaner MR, Fountaine KT, Ardo S et al (2014) Photoelectrochemistry of core–shell tandem junction n–p+ -Si/n-WO3 microwire array photoelectrodes. Energy Environ Sci 7:779. doi: 10.1039/c3ee43048k CrossRefGoogle Scholar
  58. 58.
    Rongé J, Bosserez T, Martel D et al (2014) Monolithic cells for solar fuels. Chem Soc Rev 43:7963–7981. doi: 10.1039/c3cs60424a CrossRefGoogle Scholar
  59. 59.
    Ager JW III, Shaner M, Walczak K et al (2015) Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci. doi: 10.1039/C5EE00457H Google Scholar
  60. 60.
    Gaillard N, Chang Y, Kaneshiro J et al (2010) Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’i. Proc SPIE 7770:77700 V–77700 V–14. doi: 10.1117/12.860970
  61. 61.
    Fujii K, Nakamura S, Sugiyama M et al (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrogen Energy 38:14424–14432. doi: 10.1016/j.ijhydene.2013.07.010 CrossRefGoogle Scholar
  62. 62.
    Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18 %. Int J Hydrogen Energy 32:3248–3252. doi: 10.1016/j.ijhydene.2007.04.036 CrossRefGoogle Scholar
  63. 63.
    Luo J, Im J-H, Mayer MT et al (2014) Water photolysis at 12.3 % efficiency via perovskite photovoltaics and earth-abundant catalysts. Science (80-) 345:1593–1596. doi: 10.1126/science.1258307
  64. 64.
    Jacobsson TJ, Fjallstrom V, Sahlberg M et al (2013) A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10 % solar-to-hydrogen efficiency. Energy Environ Sci 6:3676–3683. doi: 10.1039/C3EE42519C CrossRefGoogle Scholar
  65. 65.
    Cox CR, Lee JZ, Nocera DG, Buonassisi T (2014) Ten-percent solar-to-fuel conversion with nonprecious materials. Proc Natl Acad Sci 111:14057–14061. doi: 10.1073/pnas.1414290111 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Joint Center for Artificial Photosynthesis and Materials Sciences Division, Lawrence Berkeley National Laboratory and Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations