Skip to main content

Electrochemical Water Splitting Coupled with Solar Cells

  • Chapter
  • First Online:
  • 3042 Accesses

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

The simplest method for solar to chemical energy conversion is water splitting using electrochemical cells operated by solar cells. Both two devices have been established and well-studied, however, their coupling is difficult due to the variability of the solar radiation. In this chapter, the coupling technique and efficiency improvement of the combination of the electrochemical cell and solar cell are discussed based on the basic principles of both devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Trasatti S (1999) 1799–1999: Alessandro Volta’s ‘Electric Pile’ Two hundred years, but it doesn’t seem like it. J Electroanal Chem 460:1–4; de Levie R (1999) The electrolysis of water. J Electroanal Chem 476:92–93. (Erratum: Trasatti S (2000) Erratum to ‘‘Water electrolysis: who first?’’, 481:112)

    Google Scholar 

  2. http://en.wikipedia.org/wiki/Dmitry_Lachinov, http://en.wikipedia.org/wiki/Electrolysis_of_water. (2013.11.18)

  3. Fritts CE (1883) On a new form of selenium photocell. Am J Sci 26:465, http://en.wikipedia.org/wiki/Timeline_of_solar_cells (2013.11.18)

  4. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon pn junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677

    Article  Google Scholar 

  5. Costogue EN, Yasui RK (1977) Performance data for a terrestrial solar photovoltaic/water electrolysis experiment. Sol Energy 19:205–210

    Article  Google Scholar 

  6. Reference for water electrolysis. For example, Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen, the solar generation of hydrogen by water photoelectrolysis. Springer, ISBN: 978-0-387-6828-9, pp 1–111, Chap 1–2

    Google Scholar 

  7. See solar cell device principles. For example, Haeberlin H (2012) Photovoltaics system design and practice, English Version. Wiley, ISBN: 978-1-119-99285-1, pp 79–125, Chap 3

    Google Scholar 

  8. Reference for electrochemical cell. For example, Bird AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, ISBN: 0-471-04372-9, pp 1–43, Chap 1

    Google Scholar 

  9. Esteve D, Ganibal C, Steinmetz D, Vialaron A (1982) Performance of a photovoltaic electrolysis system. Int J Hydrogen Energy 7:711–716

    Article  Google Scholar 

  10. Fischer M (1986) Review of hydrogen production with photovoltaic electrolysis systems. Int J Hydrogen Energy 11:495–501

    Article  Google Scholar 

  11. Siegel A, Schott T (1988) Optimization of photovoltaic hydrogen production. Int J Hydrogen Energy 13:659–675

    Article  Google Scholar 

  12. Garcia-Conde AG, Rosa F (1993) Solar hydrogen production: a Spanish experience. Int J Hydrogen Energy 18:995–1000

    Article  Google Scholar 

  13. Arriaga LG, Martinez W, Cano U, Blud H (2007) Direct coupling of a solar-hydrogen system in Mexico 32:2247–2252

    Google Scholar 

  14. Solmecke H, Just O, Hackstein D (2000) Comparison of solar hydrogen storage systems with and without power electric DC-DC-converters. Renewable Energy 19:333–338

    Article  Google Scholar 

  15. Shapiro D, Duffy J, Kimble M, Pien M (2005) Solar-powered regenerative PEM electrolyzer/fuel cell system. Sol Energy 79:544–550

    Article  Google Scholar 

  16. Garcia-Valverde R, Miguel C, Martinez-Bejar R, Urbina A (2008) Optimized photovoltaic generator-water electrolyzer coupling through a controlled DC-DC converter. Int J Hydrogen Energy 33:5352–5362

    Article  Google Scholar 

  17. Garrigos A, Blanes JM, Carrasco JA, Lizan JL, Beneito R, Molina JA (2010) 5 kW DC/DC converter for hydrogen generation from photovoltaic sources. Int J Hydrogen Energy 35:6123–6130

    Article  Google Scholar 

  18. Clarke RE, Giddey S, Ciacchi FT, Badwal SPS, Paul B, Andrews J (2009) Direct coupling of an electrolyser to a solar PV system for generating hydrogen. Int J Hydrogen Energy 34:2531–2542

    Article  Google Scholar 

  19. Garcia-Valverde R, Espinosa N, Urbina A (2011) Optimized method for photovoltaic-water electrolyzer direct coupling. Int J Hydrogen Energy 36:10574–10586

    Article  Google Scholar 

  20. Paul B, Andrews J (2008) Optimal coupling of PV arrays to PEM electrolysers in solar-hydrogen systems for remote area power supply. Int J Hydrogen Energy 33:490–498

    Article  Google Scholar 

  21. Maeda T, Ito H, Hasegawa Y, Zhou Z, Ishida M (2012) Study on control method of the stand-alone direct-coupling photovoltaic—water electrolyzer. Int J Hydrogen Energy 37:4819–4828

    Article  Google Scholar 

  22. Gibson TL, Kelly NA (2010) Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int J Hydrogen Energy 35:900–911

    Article  Google Scholar 

  23. Khaselev O, Turner JA (1998) Production via water splitting a monolithic photovoltaic-photoelectrochemical device for hydrogen. Science 280:425–427

    Article  Google Scholar 

  24. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2000) Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B 104:8920–8924

    Article  Google Scholar 

  25. Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18 %. Int J Hydrogen Energy 32:3248–3252

    Article  Google Scholar 

  26. Fujii K, Nakamura S, Sugiyama M, Watanabe K, Bagheri B, Nakano Y (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. J. Hydrogen Energy 38:14424–14432

    Article  Google Scholar 

  27. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsushi Fujii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fujii, K. (2016). Electrochemical Water Splitting Coupled with Solar Cells. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics