Abstract
The past few decades have witnessed significant advances in our understanding of the synthesis routes and development of electrocatalysts for the reduction of CO2 to hydrocarbons. It is also notable that the research field related to the Origin of Life theory starts to recognize the significance of electrochemical CO2 reduction by metal-sulfide minerals as the primary step for organic carbon synthesis. In this chapter, we describe recent progress in the development of catalysts for CO2 reduction in electrochemical systems, particularly from the viewpoint of the Origin of Life theory, and discuss the perspectives related to the evolutional origin of carbon monoxide dehydrogenases (CODHs), known as one of the most active natural enzymes for CO2 reduction.
Keywords
- Hydrothermal Vent
- Faradaic Efficiency
- Carbon Monoxide Dehydrogenase
- Life Theory
- Cubane Cluster
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options







References
Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium C arboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144
Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA (2007) Rapid and efficient electrocatalytic CO2/CO Interconversions by Carboxydothermus hydrogenoformans CO Dehydrogenase I on an Electrode. J Am Chem Soc 129:10328–10329
Nitschke W, Russell MJ (2009) Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W Co, S and Se, forced life to emerge. J Mol Evol 69:481–496
Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654
Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247
Royer E (1870) Reduction of carbonic acid into formic acid. C R Acad Sci 70:731–735
Coehn A, Jahn S (1904) Über elektrolytische Reduction der Kohlensäure. Ber dt Chem Ges 37:2836–2842
Ehrenfeld R (1905) Zur elektrolytischen Reduction Kohlensäure. Ber dt Chem Ges 38:4138–4143
Fischer F, Prziza O (1914) Über die elektrolytische Reduktion von unter Druck gelöstem Kohlendioxyd und Kohlenoxyd. Ber dt Chem Ges 47:256–260
Rabinowitsch M, Maschowetz A (1930) Elektrochemische Gewinnung von Formiaten aus Kohlensäure. Z Elektrochem Angew 36:846–850
Van Rysselberghe P, Alkire GJ (1944) Polarographic reduction of Carbon Dioxide. J Am Chem Soc 66:1801
Chechel PS, Antropov LI (1958) Electrochemical method for production of Sodium Formate from Carbon Dioxide and Sodium Amalgam. J Appl Chem 31:1846–1850
Ito K, Murata T, Ikeda S (1975) Electrochemical Reduction of Carbon Dioxide to Organic Compounds. Bull. Nagoya Inst. Tech. 27:209–214
Hori Y, Kikuchi K, Suzuki S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous Hydrogen Carbonate Solution. Chem Lett 1695–1698
Hori Y, Wakabe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839
Nakato Y, Yano S, Yamaguchi T, Tsubomura H (1991) Reactions and mechanism of the electrochemical reduction of Carbon Dioxide on Alloyed Copper-Silver Electrodes. Denki Kagaku 59:491–498
Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150
Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic Carbon Dioxide activation: the rate-determining step of Pyridinium-Catalyzed CO2 reduction. Chem Sus Chem 4:191–196
Keith JA, Carter EA (2013) Electrochemical reactivities of Pyridinium in solution: consequences for CO2 reduction Mechanisms. Chem Sci 4:1490–1496
Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644
Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI (2013) Water enhancement of CO2 conversion on silver in 1-Ethyl-3-Methylimidazolium tetrafluoroborate. J Electrochem Soc 160:H138–H141
Watkins JD, Bocarsly AB (2014) Direct Reduction of Carbon Dioxide to formate in high-gas-capacity ionic liquids at Post-Transition-Metal Electrodes. Chem Sus Chem 7:284–290
Sun L, Ramesha GK, Kamat PV, Brennecke JF (2014) Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30:6302–6308
Grills DC, Matsubara Y, Kuwahara Y, Golisz SR, Kurtz DA, Mello BA (2014) Electrocatalytic CO2 reduction with a homogeneous catalyst in ionic liquid: high catalytic activity at low over potential. J Phys Chem Lett 5:2033–2038
Quezada D, Honores J, García M, Armijo F, Isaacs M (2014) Electrocatalytic reduction of carbon dioxide on a cobalt tetrakis(4-aminophenyl)porphyrin modified electrode in BMImBF4. New J Chem 38:3606–3612
Zhou F, Liu S, Yang B, Wang P, Alshammari AS, Deng Y (2014) Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochem Commun 46:103–106
Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658
Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) A Ni-Fe-Cu center in a bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. Science 298:567–572
Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klaucke W, Huber R (2000) The role of Se, Mo and Fe in the structure and function of Carbon Monoxide Dehydrogenase. Biol Chem 381:865–876
Ferry JG (1995) CO Dehydrogenase. Annu Rev Microbiol 49:305–333
Dobbek H, Gremer L, Meyer O, Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci USA 96:8884–8889
Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a Carbon Monoxide Dehydrogenase reveals a [Ni–4Fe–5S] cluster. Science 293:1281–1285
Ragsdale SW, Kumar M (1996) Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA synthase. Chem Rev 96:2515–2539
Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539
Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of Carbon Dioxide Catalyzed by Iron-Sulfur Clusters [Fe4S4(SR)4]2−. J Am Chem Soc 104:6834–6836
Komeda N, Nagao H, Matsui T, Adachi G, Tanaka K (1992) Electrochemical Carbon Dioxide Fixation to Thioesters Catalyzed by [Mo2Fe6S8(SEt)9]3−. J Am Chem Soc 114:3625–3630
Tanaka K, Wakita R, Tanaka T (1989) Electrochemical Carboxylation Coupled with Nitrite Reduction Catalyzed by [Fe4S4(SPh)4]2− and [Mo2Fe6S8(SPh)9]3−. J Am Chem Soc 111:2428–2433
Yuhas BD, Prasittichai C, Hupp JT, Kanatzidis MG (2011) Enhanced electrocatalytic reduction of CO2 with Ternary Ni–Fe4S4 and Co–Fe4S4–Based Biomimetic Chalcogels. J Am Chem Soc 133:15854–15857
Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ (1827) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim Biophys Acta 871–881:2013
Yamaguchi A, Yamamoto M, Takai K, Ishii T, Hashimoto K, Nakamura R (2014) Electrochemical CO2 Reduction by Ni-containing Iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochim Acta 141:311–318
Varley JB, Hansen HA, Ammitzbøll NL, Grabow LC, Peterson AA, Rossmeisl J, Nørskov JK (2013) Ni–Fe–S Cubanes in CO2 reduction electrocatalysis: a DFT study. ACS Catal 3:2640–2643
Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179
Reysenbach A-L, Shock E (2002) Merging Genomes with Geochemistry in Hydrothermal Ecosystems. Science 296:1077–1082
Weiss RF, Lonsdale P, Lupton JE, Bainbridge AE, Craig H (1977) Hydrothermal plumes in the galapagos rift. Nature 267:600–603
Wächtershäuser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microb 10:207–210
Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204
Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150
Huber C, Wächtershäuser G (1998) Peptides by activation of Amino Acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672
Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243
Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew Chem Int Ed 49:7692–7694
Ang R, Khan, AU, Tsujii N, Takai K, Nakamura R, Mori T, Thermoelectricity generation and electron-magnon scattering in natural chalcopyrite mineral from a Deep-Sea Hydrothermal Vent, Angew Chem Int Edn., in press
Shibata M, Yoshida K, Furuya N (1995) Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. Electroanal Chem 387:143–145
Shibata M, Yoshida K, Furuya N (1995) Electrochemical synthesis of urea at gas-diffusion electrodes, III. Simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts. J Electrochem Soc 145:595–600
Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I (2014) The drive to life on wet and icy worlds. Astrobiology 14:308–343
Tsipis CA, Karipidis PA (2005) Mechanistic Insights into the Bazarov synthesis of Urea from NH3 and CO2 using electronic structure calculation methods. J Phys Chem A 109:8560–8567
Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742
Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Yamaguchi, A., Li, Y., Takashima, T., Hashimoto, K., Nakamura, R. (2016). CO2 Reduction Using an Electrochemical Approach from Chemical, Biological, and Geological Aspects in the Ancient and Modern Earth. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-25400-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25398-5
Online ISBN: 978-3-319-25400-5
eBook Packages: EnergyEnergy (R0)