CO2 Reduction Using an Electrochemical Approach from Chemical, Biological, and Geological Aspects in the Ancient and Modern Earth

  • Akira Yamaguchi
  • Yamei Li
  • Toshihiro Takashima
  • Kazuhito Hashimoto
  • Ryuhei Nakamura
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 32)

Abstract

The past few decades have witnessed significant advances in our understanding of the synthesis routes and development of electrocatalysts for the reduction of CO2 to hydrocarbons. It is also notable that the research field related to the Origin of Life theory starts to recognize the significance of electrochemical CO2 reduction by metal-sulfide minerals as the primary step for organic carbon synthesis. In this chapter, we describe recent progress in the development of catalysts for CO2 reduction in electrochemical systems, particularly from the viewpoint of the Origin of Life theory, and discuss the perspectives related to the evolutional origin of carbon monoxide dehydrogenases (CODHs), known as one of the most active natural enzymes for CO2 reduction.

References

  1. 1.
    Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium C arboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144Google Scholar
  2. 2.
    Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA (2007) Rapid and efficient electrocatalytic CO2/CO Interconversions by Carboxydothermus hydrogenoformans CO Dehydrogenase I on an Electrode. J Am Chem Soc 129:10328–10329Google Scholar
  3. 3.
    Nitschke W, Russell MJ (2009) Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W Co, S and Se, forced life to emerge. J Mol Evol 69:481–496CrossRefGoogle Scholar
  4. 4.
    Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654CrossRefGoogle Scholar
  5. 5.
    Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247CrossRefGoogle Scholar
  6. 6.
    Royer E (1870) Reduction of carbonic acid into formic acid. C R Acad Sci 70:731–735Google Scholar
  7. 7.
    Coehn A, Jahn S (1904) Über elektrolytische Reduction der Kohlensäure. Ber dt Chem Ges 37:2836–2842CrossRefGoogle Scholar
  8. 8.
    Ehrenfeld R (1905) Zur elektrolytischen Reduction Kohlensäure. Ber dt Chem Ges 38:4138–4143CrossRefGoogle Scholar
  9. 9.
    Fischer F, Prziza O (1914) Über die elektrolytische Reduktion von unter Druck gelöstem Kohlendioxyd und Kohlenoxyd. Ber dt Chem Ges 47:256–260CrossRefGoogle Scholar
  10. 10.
    Rabinowitsch M, Maschowetz A (1930) Elektrochemische Gewinnung von Formiaten aus Kohlensäure. Z Elektrochem Angew 36:846–850Google Scholar
  11. 11.
    Van Rysselberghe P, Alkire GJ (1944) Polarographic reduction of Carbon Dioxide. J Am Chem Soc 66:1801CrossRefGoogle Scholar
  12. 12.
    Chechel PS, Antropov LI (1958) Electrochemical method for production of Sodium Formate from Carbon Dioxide and Sodium Amalgam. J Appl Chem 31:1846–1850Google Scholar
  13. 13.
    Ito K, Murata T, Ikeda S (1975) Electrochemical Reduction of Carbon Dioxide to Organic Compounds. Bull. Nagoya Inst. Tech. 27:209–214Google Scholar
  14. 14.
    Hori Y, Kikuchi K, Suzuki S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous Hydrogen Carbonate Solution. Chem Lett 1695–1698Google Scholar
  15. 15.
    Hori Y, Wakabe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839Google Scholar
  16. 16.
    Nakato Y, Yano S, Yamaguchi T, Tsubomura H (1991) Reactions and mechanism of the electrochemical reduction of Carbon Dioxide on Alloyed Copper-Silver Electrodes. Denki Kagaku 59:491–498Google Scholar
  17. 17.
    Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150CrossRefGoogle Scholar
  18. 18.
    Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic Carbon Dioxide activation: the rate-determining step of Pyridinium-Catalyzed CO2 reduction. Chem Sus Chem 4:191–196CrossRefGoogle Scholar
  19. 19.
    Keith JA, Carter EA (2013) Electrochemical reactivities of Pyridinium in solution: consequences for CO2 reduction Mechanisms. Chem Sci 4:1490–1496CrossRefGoogle Scholar
  20. 20.
    Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRefGoogle Scholar
  21. 21.
    Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI (2013) Water enhancement of CO2 conversion on silver in 1-Ethyl-3-Methylimidazolium tetrafluoroborate. J Electrochem Soc 160:H138–H141CrossRefGoogle Scholar
  22. 22.
    Watkins JD, Bocarsly AB (2014) Direct Reduction of Carbon Dioxide to formate in high-gas-capacity ionic liquids at Post-Transition-Metal Electrodes. Chem Sus Chem 7:284–290CrossRefGoogle Scholar
  23. 23.
    Sun L, Ramesha GK, Kamat PV, Brennecke JF (2014) Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30:6302–6308CrossRefGoogle Scholar
  24. 24.
    Grills DC, Matsubara Y, Kuwahara Y, Golisz SR, Kurtz DA, Mello BA (2014) Electrocatalytic CO2 reduction with a homogeneous catalyst in ionic liquid: high catalytic activity at low over potential. J Phys Chem Lett 5:2033–2038CrossRefGoogle Scholar
  25. 25.
    Quezada D, Honores J, García M, Armijo F, Isaacs M (2014) Electrocatalytic reduction of carbon dioxide on a cobalt tetrakis(4-aminophenyl)porphyrin modified electrode in BMImBF4. New J Chem 38:3606–3612CrossRefGoogle Scholar
  26. 26.
    Zhou F, Liu S, Yang B, Wang P, Alshammari AS, Deng Y (2014) Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochem Commun 46:103–106CrossRefGoogle Scholar
  27. 27.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRefGoogle Scholar
  28. 28.
    Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) A Ni-Fe-Cu center in a bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. Science 298:567–572CrossRefGoogle Scholar
  29. 29.
    Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klaucke W, Huber R (2000) The role of Se, Mo and Fe in the structure and function of Carbon Monoxide Dehydrogenase. Biol Chem 381:865–876CrossRefGoogle Scholar
  30. 30.
    Ferry JG (1995) CO Dehydrogenase. Annu Rev Microbiol 49:305–333CrossRefGoogle Scholar
  31. 31.
    Dobbek H, Gremer L, Meyer O, Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci USA 96:8884–8889CrossRefGoogle Scholar
  32. 32.
    Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a Carbon Monoxide Dehydrogenase reveals a [Ni–4Fe–5S] cluster. Science 293:1281–1285CrossRefGoogle Scholar
  33. 33.
    Ragsdale SW, Kumar M (1996) Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA synthase. Chem Rev 96:2515–2539CrossRefGoogle Scholar
  34. 34.
    Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539CrossRefGoogle Scholar
  35. 35.
    Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of Carbon Dioxide Catalyzed by Iron-Sulfur Clusters [Fe4S4(SR)4]2−. J Am Chem Soc 104:6834–6836CrossRefGoogle Scholar
  36. 36.
    Komeda N, Nagao H, Matsui T, Adachi G, Tanaka K (1992) Electrochemical Carbon Dioxide Fixation to Thioesters Catalyzed by [Mo2Fe6S8(SEt)9]3−. J Am Chem Soc 114:3625–3630CrossRefGoogle Scholar
  37. 37.
    Tanaka K, Wakita R, Tanaka T (1989) Electrochemical Carboxylation Coupled with Nitrite Reduction Catalyzed by [Fe4S4(SPh)4]2− and [Mo2Fe6S8(SPh)9]3−. J Am Chem Soc 111:2428–2433CrossRefGoogle Scholar
  38. 38.
    Yuhas BD, Prasittichai C, Hupp JT, Kanatzidis MG (2011) Enhanced electrocatalytic reduction of CO2 with Ternary Ni–Fe4S4 and Co–Fe4S4–Based Biomimetic Chalcogels. J Am Chem Soc 133:15854–15857CrossRefGoogle Scholar
  39. 39.
    Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ (1827) On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim Biophys Acta 871–881:2013Google Scholar
  40. 40.
    Yamaguchi A, Yamamoto M, Takai K, Ishii T, Hashimoto K, Nakamura R (2014) Electrochemical CO2 Reduction by Ni-containing Iron sulfides: how is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochim Acta 141:311–318CrossRefGoogle Scholar
  41. 41.
    Varley JB, Hansen HA, Ammitzbøll NL, Grabow LC, Peterson AA, Rossmeisl J, Nørskov JK (2013) Ni–Fe–S Cubanes in CO2 reduction electrocatalysis: a DFT study. ACS Catal 3:2640–2643CrossRefGoogle Scholar
  42. 42.
    Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179CrossRefGoogle Scholar
  43. 43.
    Reysenbach A-L, Shock E (2002) Merging Genomes with Geochemistry in Hydrothermal Ecosystems. Science 296:1077–1082CrossRefGoogle Scholar
  44. 44.
    Weiss RF, Lonsdale P, Lupton JE, Bainbridge AE, Craig H (1977) Hydrothermal plumes in the galapagos rift. Nature 267:600–603CrossRefGoogle Scholar
  45. 45.
    Wächtershäuser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microb 10:207–210CrossRefGoogle Scholar
  46. 46.
    Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204CrossRefGoogle Scholar
  47. 47.
    Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150CrossRefGoogle Scholar
  48. 48.
    Huber C, Wächtershäuser G (1998) Peptides by activation of Amino Acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672CrossRefGoogle Scholar
  49. 49.
    Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243CrossRefGoogle Scholar
  50. 50.
    Nakamura R, Takashima T, Kato S, Takai K, Yamamoto M, Hashimoto K (2010) Electrical current generation across a black smoker chimney. Angew Chem Int Ed 49:7692–7694CrossRefGoogle Scholar
  51. 51.
    Ang R, Khan, AU, Tsujii N, Takai K, Nakamura R, Mori T, Thermoelectricity generation and electron-magnon scattering in natural chalcopyrite mineral from a Deep-Sea Hydrothermal Vent, Angew Chem Int Edn., in pressGoogle Scholar
  52. 52.
    Shibata M, Yoshida K, Furuya N (1995) Electrochemical synthesis of urea on reduction of carbon dioxide with nitrate and nitrite ions using Cu-loaded gas-diffusion electrode. Electroanal Chem 387:143–145CrossRefGoogle Scholar
  53. 53.
    Shibata M, Yoshida K, Furuya N (1995) Electrochemical synthesis of urea at gas-diffusion electrodes, III. Simultaneous reduction of carbon dioxide and nitrite ions with various metal catalysts. J Electrochem Soc 145:595–600CrossRefGoogle Scholar
  54. 54.
    Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I (2014) The drive to life on wet and icy worlds. Astrobiology 14:308–343CrossRefGoogle Scholar
  55. 55.
    Tsipis CA, Karipidis PA (2005) Mechanistic Insights into the Bazarov synthesis of Urea from NH3 and CO2 using electronic structure calculation methods. J Phys Chem A 109:8560–8567Google Scholar
  56. 56.
    Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742CrossRefGoogle Scholar
  57. 57.
    Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Akira Yamaguchi
    • 1
  • Yamei Li
    • 1
  • Toshihiro Takashima
    • 2
  • Kazuhito Hashimoto
    • 3
  • Ryuhei Nakamura
    • 1
  1. 1.Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource ScienceWakoJapan
  2. 2.Clean Energy Research CenterUniversity of YamanashiKofuJapan
  3. 3.Department of Applied ChemistryThe University of TokyoBunkyo-kuJapan

Personalised recommendations