Skip to main content

CO2 Reduction Using Electrochemical Approach

  • Chapter
  • First Online:
Solar to Chemical Energy Conversion

Part of the book series: Lecture Notes in Energy ((LNEN,volume 32))

Abstract

Electrochemical Reduction of CO2 may contribute to energy storage process. It has been a challenging subject, since it competes with hydrogen evolution in aqueous electrolytes. The studies started in the beginning of 20th century using metal electrodes of high hydrogen overvoltage, and the main product remained formate for long time. A breakthrough appeared in 1980s; Cu electrode gives rise to hydrocarbons, and Au and Ag form CO. This chapter provides an overview of the electrocatalysis of metal electrodes in CO2 reduction, and briefly discusses some problems to be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell PG, Kovac N, Srinivasan S, Steinberg M (1977) J Electrochem Soc 124:1329

    Article  Google Scholar 

  2. Hori Y (1993) In: Tomkiewicz M et al, Proceedings of the symposium on environmental aspects of electrochemistry and photoelectrochemistry, vol 93–18. The Electrochemical Society, p 1

    Google Scholar 

  3. Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) J Appl Electrochem 27:875

    Article  Google Scholar 

  4. Halmann MM, Steinberg M (1999) Greenhous gas, Science and Technology. Lewis Publishers, Carbon Dioxide Mitigation

    Google Scholar 

  5. Hori Y (2003) In: Handbook of fuel cells, fundamentals, technology and applications, vol 2. Wiley, p 720

    Google Scholar 

  6. Chaplin RPS, Wragg AA (2003) J Appl Electrochem 33:1107

    Article  Google Scholar 

  7. Scibioh MA, Viswanathan B (2004) Proceedings of the Indian national science academy, part A: physical sciences, vol 70, pp 407–462

    Google Scholar 

  8. Gattrell M (2006) J Electroanal Chem 594:1

    Article  Google Scholar 

  9. Hori Y (2008) Modern aspects of electrochemistry, vol 42. In: Vayenas CG et al, Springer, p 89

    Google Scholar 

  10. Jhong H-RM, Ma S, Kenis PJA (2013) Cur Opin Chem Eng 2:191

    Article  Google Scholar 

  11. Pinsent BRW, Pearson L, Roughton FJW (1956) Trans Faraday Soc 52:1512

    Article  Google Scholar 

  12. Teeter TE, Van Rysselberghe P (1954) J Chem Phys 22:1759

    Google Scholar 

  13. Van Rysselberghe P, Alkire GJ, McGee JM (1946) J Amer Chem Soc 68:2050

    Article  Google Scholar 

  14. Udupa KS, Subramanian GS, Udupa HVK (1971) Electrochim Act 16:1593

    Article  Google Scholar 

  15. Stalder CJ, Chao S, Wrighton MS (1984) J Am Chem Soc 106:3673

    Article  Google Scholar 

  16. Spichiger-Ulmann M, Augustynski J (1985) J Chem Soc, Faraday Trans 1(81):713

    Article  Google Scholar 

  17. Hori Y, Suzuki S (1983) J Electrochem Soc 130:2387

    Article  Google Scholar 

  18. Eggins BR, Bennett EM, McMullan EA (1996) J Electroanal Chem 408:165

    Article  Google Scholar 

  19. Kuhn AT (1997) Electrochemistry. In: Bloom H, Gutmann F (eds) The past thirty and the next thirty years. Plenum Press p 139

    Google Scholar 

  20. Bockris JO′M, Khan SUM (1993) Surface electrochemistry, a molecular level approach. Plenum Press, New York, p. 9

    Google Scholar 

  21. Bockris JO’M, Reddy AKN (1970) Modern electrochemistry, vol 2. Plenum Press, New York

    Google Scholar 

  22. Kyriacou G, Anagnostopoulos A (1992) J Electroanal Chem 322:233

    Article  Google Scholar 

  23. Jermann B, Augustynski J (1994) Electrochim Act 39:1891

    Article  Google Scholar 

  24. Friebe P, Bogdanoff P, Alonso-Vante N, Tributsch H (1997) J. Catal. 168:374

    Article  Google Scholar 

  25. Kedzierzawski P, Augustynski J (1994) J Electrochem Soc 141:L58

    Article  Google Scholar 

  26. Kostecki R, Augustynski J (1994) Ber Bunsen-Ges Phys Chem 98:1510

    Article  Google Scholar 

  27. Yano H, Shirai F, Ogura K (2002) J Electroanal Chem 533:113

    Article  Google Scholar 

  28. Hori Y, Konishi H, Futamura T, Murata A, Koga O, Sakurai H, Oguma K (2005) Electrochim Acta 50:5354

    Article  Google Scholar 

  29. Sawyer DT. Sobkowiak A, Roberts JL, Jr (1995) Electrochemistry for Chemists, 2nd edn. Wiley

    Google Scholar 

  30. Vetter KJ (1967) Electrochemical kinetics, theoretical and experimental aspects. Academic Press, New York, p 556

    Google Scholar 

  31. Paik W, Andersen TN, Eyring H (1969) Electrochim Act 14:1217

    Article  Google Scholar 

  32. Hori Y, Suzuki S (1982) Bull Chem Soc Jpn 55:660

    Article  Google Scholar 

  33. Hori Y, Kikuchi K, Suzuki S (1985) Chem Lett 1695

    Google Scholar 

  34. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrochim Act 39:1833

    Article  Google Scholar 

  35. Hori Y, Murata A, Takahashi R (1989) J Chem Soc Faraday Trans I 85:2309

    Article  Google Scholar 

  36. Hori Y, Murata A, Takahashi R, Suzuki S (1987) J Amer Chem Soc 109:5022

    Article  Google Scholar 

  37. Hori Y, Koga O, Yamazaki H, Matsuo T (1995) Electrochim Acta 40:2617

    Article  Google Scholar 

  38. Shaw SK, Berna A, Feliu JM, Nichols RJ, Jacob T, Schiffrin DJ (2011) Phys Chem Chem Phys 13:5242

    Article  Google Scholar 

  39. Hori Y, Murata A, Yoshinami Y (1991) J Chem Soc, Faraday Trans 87:125

    Article  Google Scholar 

  40. Hori Y, Takahashi R, Yoshinami Y, Murata A (1997) J Phys Chem B 101:7075

    Article  Google Scholar 

  41. Schouten Y, van der Kwon CJM, Ham Z, Qin MTM (2011) Koper. Chem Sci 2:1902

    Article  Google Scholar 

  42. Durand WJ, Peterson AA, Studt F, Abild-Pedersen F, Norskov JK (2011) Sur Sc 605:1354

    Article  Google Scholar 

  43. Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Norskov JK, Chorkendorff I (2012) Phys Chem Chem Phys 14:76

    Article  Google Scholar 

  44. Hori Y, Murata A, Takahashi R, Suzuki S (1987) Chem Lett 1665

    Google Scholar 

  45. Watanabe K, Nagashima U, Hosoya H (1993) Chem Phys Lett 209:109

    Article  Google Scholar 

  46. Watanabe K, Nagashima U, Hosoya H (1994) Appl Surf Sci 75:121

    Article  Google Scholar 

  47. Peterson AA, Norskov JK (2012) J Phys Chem Lett 3:251

    Article  Google Scholar 

  48. Hara K, Tsuneto A, Kudo A, Sakata T (1994) J Electrochem Soc 141:2097

    Article  Google Scholar 

  49. Murata A, Hori Y (1991) Bull Chem Soc Jpn 64:123

    Article  Google Scholar 

  50. Kyriacou GZ, Anagnostopoulos AK (1993) J Appl Electrochem 23:483

    Article  Google Scholar 

  51. Kaneco S, Katsumataa H, Suzuki T, Ohta K (2006) Electrochim Act 51:3316

    Article  Google Scholar 

  52. Kim JJ, Summers DP, Frese KW Jr (1988) J Electroanal Chem 245:223

    Article  Google Scholar 

  53. Koga O, Nakama K, Murata A, Hori Y (1989) Denki Kagaku (Electrochem) 57:1137

    Google Scholar 

  54. Frese KW Jr (1991) J Electrochem Soc 138:3338

    Article  Google Scholar 

  55. Chen YH, Li CW, Kanan MW (2012) J Am Chem Soc 134:19969

    Article  Google Scholar 

  56. Hori Y, Murata A, Ito S, Yoshinami Y, Koga O (1989) Chem Lett 1567

    Google Scholar 

  57. Hori Y, Murata A (1990) Chem Lett 1231

    Google Scholar 

  58. Watanabe M, Shibata M, Kato A, Azuma M, Sakata T (1991) J Electrochem Soc 138:3382

    Article  Google Scholar 

  59. Kyriacou G, Anagnostopoulos A (1992) J Electroanal Chem 328:233

    Article  Google Scholar 

  60. Hara K, Tsuneto A, Kudo A, Sakata T (1997) J Electroanal Chem 434:239

    Article  Google Scholar 

  61. Momose Y, Sato K, Ohno O (2002) Surf Interface Anal 34:615

    Article  Google Scholar 

  62. Ogura K, Yano H, Shirai F (2003) J Electrochem Soc 150:D163

    Article  Google Scholar 

  63. Yano H, Tanaka T, Nakayama M, Ogura K (2004) J Electroanal Chem 565:287

    Article  Google Scholar 

  64. Lamy E, Nadjo L, Savéant J-M (1977) J Electroanal Chem 78:403

    Article  Google Scholar 

  65. Schwarz HA, Dodson RW (1989) J Phys Chem 93:409

    Article  Google Scholar 

  66. Surdhar PS, Mezyk SP, Armstrong DA (1989) J Phys Chem 93:3360

    Article  Google Scholar 

  67. Seshadri G, Lin C, Bocarsly AB (1994) J Electroanal Chem 372:145

    Article  Google Scholar 

  68. Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Bocarsly AB (2010) J Amer Chem Soc 132:11539

    Article  Google Scholar 

  69. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Science 334:643

    Article  Google Scholar 

  70. Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJA (2012) J Am Chem Soc 134:19520

    Article  Google Scholar 

  71. Ito K, Ikeda S, Iida T, Niwa H (1981) Denki Kagaku 49:106

    Google Scholar 

  72. Ito K, Ikeda S, Iida T, Nomura A (1982) Denki Kagaku 50:463

    Google Scholar 

  73. Ito K, Ikeda S, Okabe M (1980) Denki Kagaku 48:247

    Google Scholar 

  74. Hara K, Kudo A, Sakata T (1995) J Electroanal Chem 391:141

    Article  Google Scholar 

  75. Nakagawa S, Kudo A, Azuma M, Sakata T (1991) J Electroanal Chem 308:339

    Article  Google Scholar 

  76. Todoroki M, Hara K, Kudo A, Sakata T (1995) J Electroanal Chem 394:199

    Article  Google Scholar 

  77. Saeki T, Hashimoto K, Kimura N, Omata K, Fujishima A (1995) J Electroanal Chem 390:77

    Article  Google Scholar 

  78. Mazin VM, Mysov EI, Grinberg VA (1997) Russ J Electrochem 33:779

    Google Scholar 

  79. Li J, Prentice G (1997) J Electrochem Soc 144:4284

    Article  Google Scholar 

  80. Mahmood MN, Masheder D, Harty CJ (1987) J Appl Electrochem 17:1159

    Article  Google Scholar 

  81. Furuya N, Yamazaki T, Shibata M (1997) J Electroanal Chem 431:39

    Article  Google Scholar 

  82. Shibata M, Yoshida K, Furuya N (1998) J Electrochem Soc 145:595

    Article  Google Scholar 

  83. Shibata M, Furuya N (2001) J Electroanal Chem 507:177

    Article  Google Scholar 

  84. Shibata M, Furuya N (2003) Electrochim Act 48:3953

    Article  Google Scholar 

  85. Mahmood MN, Masheder D, Harty CJ (1987) J Applied Electrochem 17:1223

    Article  Google Scholar 

  86. Furuya N, Matsui K, Motoo S (1988) Denki Kagaku 56:288

    Google Scholar 

  87. Savinova ER, Yashnik SA, Savinov EN, Parmon VN (1992) React Kinet Catal Lett 46:249

    Article  Google Scholar 

  88. Cook RL, MacDuff RC, Sammells AF (1990) J Electrochem Soc 137:607

    Article  Google Scholar 

  89. Ikeda S, Ito T, Azuma K, Ito K, Noda H (1995) Denki Kagaku 63:303

    Google Scholar 

  90. Schwartz M, Cook RL, Kehoe VM, MacDuff RC, Patel J, Sammells AF (1993) J Electrochem Soc 140:614

    Article  Google Scholar 

  91. Hara K, Kudo A, Sakata T, Watanebe M (1995) J Electrochem Soc 142:L57

    Article  Google Scholar 

  92. Hara K, Sakata T (1997) J Electrochem Soc 144:539

    Article  Google Scholar 

  93. Hara K, Sakata T (1995) Anal Sci Technol 8:683

    Google Scholar 

  94. Hara K, Sakata T (1997) Bull Chem Soc Jpn 70:571

    Article  Google Scholar 

  95. Yamamoto T, Hirota K, Tryk DA, Hashimoto K, Fujishima A, Okawa M (1998) Chem Lett 825

    Google Scholar 

  96. Tryk DA, Yamamoto T, Kokubun M, Hirota K, Hashimoto K, Okawa M, Fujishima A (2001) Appl Organomet Chem 15:113

    Article  Google Scholar 

  97. Magdesieva TV, Yamamoto T, Tryk DA, Fujishima A (2002) J Electrochem Soc 149:D89

    Article  Google Scholar 

  98. DeWulf DW, Bard AJ (1988) Catal Lett 1:73

    Article  Google Scholar 

  99. Cook RL, MacDuff RC, Sammells AF (1988) J Electrochem Soc 135:1470

    Article  Google Scholar 

  100. Cook RL, MacDuff RC, Sammells AF (1990) J Electrochem Soc 137:187

    Article  Google Scholar 

  101. Komatsu S, Tanaka M, Okumura A, Kunugi A (1995) Electrochim Act 40:745

    Article  Google Scholar 

  102. Hori Y, Ito H, Okano K, Nagasu K, Sato S (2003) Electrochim Act 48:2651

    Article  Google Scholar 

  103. Stevens GB, Reda T, Raguse B (2002) J Electroanal Chem 526:125

    Article  Google Scholar 

  104. Ogura K, Yano H, Tanaka T (2004) Catal Today 98:515

    Article  Google Scholar 

  105. Koleli F, Balun D (2004) Appl Catal A 274:237

    Article  Google Scholar 

  106. Koleli F, Atilan T, Palamut N, Gizir AM, Aydin R, Hamann CH (2003) J Appl Electrochem 33:447

    Article  Google Scholar 

  107. Akahori Y, Iwanaga N, Kato Y, Hamamoto O, Ishii M (2004) Electrochemistry (Tokyo, Japan) 72:266

    Google Scholar 

  108. Subramanian K, Asokan K, Jeevarathinam D, Chandrasekaran M (2007) J Appl Electrochem 37:255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Hori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hori, Y. (2016). CO2 Reduction Using Electrochemical Approach. In: Sugiyama, M., Fujii, K., Nakamura, S. (eds) Solar to Chemical Energy Conversion. Lecture Notes in Energy, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-25400-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25400-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25398-5

  • Online ISBN: 978-3-319-25400-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics