Water Splitting Using Electrochemical Approach

  • Akira Yamaguchi
  • Toshihiro Takashima
  • Kazuhito Hashimoto
  • Ryuhei NakamuraEmail author
Part of the Lecture Notes in Energy book series (LNEN, volume 32)


For electrochemical water splitting, a number of bioinspired and biomimetic Mn-based materials have been developed; however, the catalytic performances markedly differ between natural and synthetic Mn catalysts. Based on the recent in situ detection of surface intermediates for the oxygen evolution reaction (OER) by MnO2, this chapter introduces the design rationale for the efficient OER catalysts, and discusses the evolutional origin of natural Mn4-clusters to provide a better understanding of the differences in activity between natural and man-made OER catalysts.


Proton Transfer Water Oxidation Onset Potential Oxygen Evolution reactionOxygen Evolution Reaction MnO2 Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Nozik AJ (1978) PHOTOELECTROCHEMISTRY: APPLICATIONS TO SOLAR ENERGY CONVERSION. Annu Rev Phys Chem 29:189–222CrossRefGoogle Scholar
  3. 3.
    Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRefGoogle Scholar
  4. 4.
    Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735CrossRefGoogle Scholar
  5. 5.
    Vass I, Styring S (1991) pH-dependent charge equilibria between Tyrosine-D and the S states in photosystem ii. Estimation of Relative Midpoint Redox Potentials. Biochemistry 30:830–839Google Scholar
  6. 6.
    Geijer P, Morvaridi F, Styring S (2001) The S3 state of the oxygen-evolving complex in photosystem ii is converted to the S2YZ state at alkaline pH. Biochemistry 40:10881–10891CrossRefGoogle Scholar
  7. 7.
    Metz JG, Nixon PJ, Rogner M, Brudvig GW, Diner BA (1989) Directed alteration of the D1 polypeptide of photosystem II: evidence that Tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry 28:6960–6969CrossRefGoogle Scholar
  8. 8.
    Ananyev G, Dismukes GC (2005) How fast can photosystem ii split water? Kinetic performance at high and low frequencies. Photosynth Res 84:355–365CrossRefGoogle Scholar
  9. 9.
    Trasatti S, Buzzanca G (1971) Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem 29:A1–A5CrossRefGoogle Scholar
  10. 10.
    Harriman A, Richoux M, Christensen PA, Moseri S, Neta P (1987) Redox reactions with colloidal metal oxides. Comparison of radiation-generated and chemically generated RuO2・2H2O. J Chem Soc Faraday Trans 1(83):3001–3014CrossRefGoogle Scholar
  11. 11.
    Kiwi J, Grätzel M (1979) Colloidal redox catalysts for evolution of oxygen and for light-induced evolution of hydrogen from water. Angew Chem Int Ed 18:624–626CrossRefGoogle Scholar
  12. 12.
    Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 1(84):2795–2806CrossRefGoogle Scholar
  13. 13.
    Mills A, Russell T (1991) Comparative study of new and established heterogeneous oxygen catalysts. J Chem Soc Faraday Trans 87:1245–1250CrossRefGoogle Scholar
  14. 14.
    Yagi M, Tomita E, Sakita S, Kuwabara T, Nagai K (2005) Self-assembly of active IrO2 colloid catalyst on an ITO electrode for efficient electrochemical water oxidation. J Phys Chem B 109:21489–21491CrossRefGoogle Scholar
  15. 15.
    Nakagawa T, Bjorge NS, Murray RW (2009) Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J Am Chem Soc 131:15578–15579CrossRefGoogle Scholar
  16. 16.
    Nakagawa T, Beasley CA, Murray RW (2009) Efficient Electro-oxidation of water near its reversible potential by a mesoporous IrOx nanoparticle film. J Phys Chem C 113:12958–12961CrossRefGoogle Scholar
  17. 17.
    Rüetschi P, Delahay P (1955) Influence of electrode material on oxygen overvoltage: a theoretical analysis. J. Chem. Phys. 23:556–560CrossRefGoogle Scholar
  18. 18.
    Iwakura C, Nashioka M, Tamura H (1982) Nihon Kagaku Kaishi 8:1294–1298CrossRefGoogle Scholar
  19. 19.
    Bockris JO, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131:290–301CrossRefGoogle Scholar
  20. 20.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385CrossRefGoogle Scholar
  21. 21.
    Raabe S, Mierwaldt D, Ciston J, Uijttewaal M, Stein H, Hoffmann J, Zhu Y, Blöchl P, Jooss C (2012) In situ electrochemical electron microscopy study of oxygen evolution activity of doped manganite perovskites. Adv Funct Mater 22:3378–3388CrossRefGoogle Scholar
  22. 22.
    Brunschwig BS, Chou MH, Creutz C, Ghosh P, Sutin N (1983) Mechanisms of water oxidation to oxygen: cobalt(iv) as an intermediate in the aquocobalt(ii)-catalyzed reaction. J Am Chem Soc 105:4832–4833CrossRefGoogle Scholar
  23. 23.
    Kanan MW, Nocera DG (2008) In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science 321:1072–1075CrossRefGoogle Scholar
  24. 24.
    Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072CrossRefGoogle Scholar
  25. 25.
    Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614CrossRefGoogle Scholar
  26. 26.
    Mohammad AM, Awad MI, El-Deab MS, Okajima T, Ohsaka T (2008) Electrocatalysis by nanoparticles: optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochim Acta 53:4351–4358CrossRefGoogle Scholar
  27. 27.
    El-Deab MS, Awad MI, Mohammad AM, Ohsaka T (2007) Enhanced water electrolysis: electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochem Commun 9:2082–2087CrossRefGoogle Scholar
  28. 28.
    Morita M, Iwakura C, Tamura H (1979) The anodic characteristics of massive manganese oxide electrode. Electrochim Acta 24:357–362CrossRefGoogle Scholar
  29. 29.
    Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328Google Scholar
  30. 30.
    Morita M, Iwakura C, Tamura H (1978) The anodic characteristics of modified Mn oxide electrode: Ti/RuOx/MnOx. Electrochim Acta 23:331–335CrossRefGoogle Scholar
  31. 31.
    Robinson DM, Go YB, Greenblatt M, Dismukes GC (2010) Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J Am Chem Soc 132:11467–11469CrossRefGoogle Scholar
  32. 32.
    Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4・xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237CrossRefGoogle Scholar
  33. 33.
    Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922CrossRefGoogle Scholar
  34. 34.
    Yagi M, Narita K (2004) Catalytic O2 Evolution from water induced by adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ complex onto clay compounds. J Am Chem Soc 126:8084–8085CrossRefGoogle Scholar
  35. 35.
    Narita K, Kuwabara T, Sone K, Shimizu K, Yagi M (2006) Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds. J Phys Chem B 110:23107–23114CrossRefGoogle Scholar
  36. 36.
    Brimblecombe R, Swiegers GF, Dismukes GC, Spiccia L (2008) Sustained water oxidation photocatalysis by a bioinspired manganese cluster. Angew Chem Int Ed 47:7335–7338CrossRefGoogle Scholar
  37. 37.
    Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283:1524–1527CrossRefGoogle Scholar
  38. 38.
    Naruta Y, Sasayama M, Sasaki T (1994) Oxygen evolution by oxidation of water with manganese porphyrin dimers. Angew Chem Int Ed Engl 33:1839–1841CrossRefGoogle Scholar
  39. 39.
    Gao Y, Åkermark T, Liu J, Sun L, Åkermark B (2009) Nucleophilic attack of hydroxide on a MnV Oxo complex: a model of the O–O bond formation in the oxygen evolving complex of photosystem II. J Am Chem Soc 131:8726–8727CrossRefGoogle Scholar
  40. 40.
    Najafpour MM, Haghighi B, Ghobadi MZ, Sedigh DJ (2013) Nanolayered manganese oxide/poly(4-vinylpyridine) as a biomimetic and very efficient water oxidizing catalyst: toward an artificial enzyme in artificial photosynthesis. Chem Comm 49:8824–8826CrossRefGoogle Scholar
  41. 41.
    Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J (2011) Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 3:79–84CrossRefGoogle Scholar
  42. 42.
    Singh RN, Singh JP, Cong HN, Chartier P (2006) Effect of partial substitution of Cr on electrocatalytic properties of MnFe2O4 towards O2-evolution in alkaline medium. Int J Hydrogen Energy 31:1372–1378CrossRefGoogle Scholar
  43. 43.
    Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135:3494–3501CrossRefGoogle Scholar
  44. 44.
    Takashima T, Hashimoto K, Nakamura R (2012) Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J Am Chem Soc 134:1519–1527CrossRefGoogle Scholar
  45. 45.
    Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134:18153–18156CrossRefGoogle Scholar
  46. 46.
    Takashima T, Yamaguchi A, Hashimoto K, Irie H, Nakamura R (2014) In situ UV-vis absorption spectra of intermediate species for oxygen-evolution reaction on the surface of MnO2 in neutral and alkaline media. Electrochemistry 82:325–327CrossRefGoogle Scholar
  47. 47.
    Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–61CrossRefGoogle Scholar
  48. 48.
    Yano J, Kern J, Sauer K, Latimer MJ, Puskar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825CrossRefGoogle Scholar
  49. 49.
    Haumann M, Muller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W, Dau H (2005) Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation Cycle (S0 → S1, S1 → S2, S2 → S3, and S3,4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry 44:1894–1908CrossRefGoogle Scholar
  50. 50.
    Siegbahn PE (1827) Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release. Biochim Biophys Acta 1003–1019:2013Google Scholar
  51. 51.
    Gatt P, Stranger R, Pace RJ (2011) Application of computational chemistry to understanding the structure and mechanism of the Mn catalytic site in photosystem II—a review. J Photochem Photobiol, B 104:80–93CrossRefGoogle Scholar
  52. 52.
    Galstyan A, Robertazzi A, Knapp EW (2012) Oxygen-evolving Mn cluster in photosystem II: the protonation pattern and oxidation state in the high-resolution crystal structure. J Am Chem Soc 134:7442–7449CrossRefGoogle Scholar
  53. 53.
    Kanda K, Yamanaka S, Saito T, Umena Y, Kawakami K, Shen J-R, Kamiya N, Okumura M, Nakamura H, Yamaguchi K (2011) Labile electronic and spin states of the CaMn4O5 cluster in the PSII system refined to the 1.9 Å X-ray resolution. UB3LYP computational results. Chem Phys Lett 506:98–103CrossRefGoogle Scholar
  54. 54.
    Gatt P, Petrie S, Stranger R, Pace RJ (2012) Rationalizing the 1.9 Å crystal structure of photosystem II—a remarkable Jahn–Teller balancing act induced by a single proton transfer. Angew Chem Int Ed 51:12025–12028Google Scholar
  55. 55.
    Roelofs TA, Liang WC, Latimer MJ, Cinco RM, Rompel A, Andrews JC, Sauer K, Yachandra VK, Klein MP (1996) Oxidation states of the manganese cluster during the flash-induced S-state cycle of the photosynthetic oxygen-evolving complex. Proc Natl Acad Sci USA 93:3335–3340CrossRefGoogle Scholar
  56. 56.
    Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2008) A model of the oxygen-evolving center of photosystem II predicted by structural Refinement based on EXAFS Simulations. J Am Chem Soc 130:6728–6730CrossRefGoogle Scholar
  57. 57.
    Mazin II, Khomskii DI, Lengsdorf R, Alonso JA, Marshall WG, Ibbreson RM, Podlesnyak A, Martínez-Lope MJ, Abd-Elmeguid MM (2007) Charge ordering as alternative to Jahn-Teller distortion. Phys Rev Lett 98:176406CrossRefGoogle Scholar
  58. 58.
    Mizokawa T, Khomskii DI, Sawatzky GA (2000) Spin and charge ordering in self-doped Mott insulators. Phys Rev B 61:11263–11266CrossRefGoogle Scholar
  59. 59.
    Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR (2013) Electrostatic effects on proton-coupled electron transfer in oxomanganese complexes inspired by the oxygen-evolving complex of photosystem II. J Phys Chem B 117:6217–6226CrossRefGoogle Scholar
  60. 60.
    Meyer TJ, Huynh MH, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46:5284–5304CrossRefGoogle Scholar
  61. 61.
    Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S (2013) All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J Am Chem Soc 135:15670–15673CrossRefGoogle Scholar
  62. 62.
    Yamaguchi A, Inuzuka R, Takashima T, Hayashi T, Hashimoto K, Nakamura R (2014) Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH. Nat Commun doi: 10.1038/ncomms5256 Google Scholar
  63. 63.
    Medina-Ramos J, Oyesanya O, Alvarez JC (2013) Buffer effects in the kinetics of concerted proton-coupled electron transfer: the electrochemical oxidation of glutathione mediated by [IrCl6]2− at variable buffer pK a and concentration. J Phys Chem C 117:902–912CrossRefGoogle Scholar
  64. 64.
    Jencks WP (1972) Requirements for general acid-base catalysis of complex reactions. J Am Chem Soc 94:4731–4732CrossRefGoogle Scholar
  65. 65.
    Jencks WP (1972) General acid-base catalysis of complex reactions in water. Chem Rev 72:705–718CrossRefGoogle Scholar
  66. 66.
    Russell MJ, Hall AJ (2002) Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. The Geochemical News 113:6–12Google Scholar
  67. 67.
    Sauer K, Yachandra VK (2002) A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad Sci USA 99:8631–8636CrossRefGoogle Scholar
  68. 68.
    Armstrong FA (2008) Why did nature choose manganese to make oxygen? Phil Trans R Soc B 363:1263–1270CrossRefGoogle Scholar
  69. 69.
  70. 70.
    Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, Dasgupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175CrossRefGoogle Scholar
  71. 71.
    Lane N (2010) The rollercoaster ride to an oxygen-rich world. New Scientist 205:2746CrossRefGoogle Scholar
  72. 72.
    Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97:1400–1405CrossRefGoogle Scholar
  73. 73.
    Fan X, Hou J, Sun D, Xi S, Liu Z, Du J, Luo J, Tao C (2013) Mn-oxides catalyzed periodic current oscillation on the anode. Electrochim Acta 102:466–471Google Scholar
  74. 74.
    Olexová A, Melicherčík M, Treindl L (1997) Oscillatory oxidation of Mn(II) ions by hexacyanoferrates(III) and bistability in the reduction of MnO2 by hexacyanoferrates(II) in a CSTR. Chem Phys Lett 268:505–509Google Scholar
  75. 75.
    Tributsch H (1994) The challenge of non-linear and co-operative mechanisms for electrocatalysis. Electrochim Acta 39:1495–1502Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Akira Yamaguchi
    • 1
  • Toshihiro Takashima
    • 2
  • Kazuhito Hashimoto
    • 3
  • Ryuhei Nakamura
    • 1
    Email author
  1. 1.Biofunctional Catalyst Research TeamRIKEN Center for Sustainable Resource ScienceWakoJapan
  2. 2.Clean Energy Research CenterUniversity of YamanashiKofuJapan
  3. 3.Department of Applied ChemistryThe University of TokyoBunkyo-kuJapan

Personalised recommendations