Skip to main content

Recent Progress on Nonlocal Graphene/Surface Plasmons

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

We review recent experimental and theoretical studies of the non-local plasmon dispersion relations of both single and double layers of graphene which are Coulomb-coupled to a thick conducting medium. High-resolution electron energy loss spectroscopy (HREELS) was employed in the investigations. A mean-field theory (R.P.A.) formulation was used to simulate and explain the experimental results, with the undamped plasmon excitation spectrum calculated for arbitrary wave number. Our numerical calculations show that when the separation a between a graphene layer and the surface is less than a critical value ac = 0.4k −1F , the lower acoustic plasmon is overdamped. This result seems to explain the experimentally observed behavior for the plasmon mode intensity as a function of wave vector. The damping, as well as the critical distance, changes in the presence of an energy bandgap for graphene. We also report similar damping features of the plasmon modes for a pair of graphene layers. However, the main difference arising in the case when there are two layers is that if the separation between the layer nearest the surface and the surface is less than ac, then both the symmetric and antisymmetric modes become damped, in different ranges of wave vector.

This is a preview of subscription content, log in via an institution.

References

  1. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261482 (2010)

    Google Scholar 

  2. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, 2012)

    Google Scholar 

  3. H.S. Aoki, M. Dresselhaus, Physics of Graphene (Springer, 2014)

    Google Scholar 

  4. E.L. Wolf, Graphene: A New Paradigm in Condensed Matter and Device Physics (Oxford University Press, 2013)

    Google Scholar 

  5. G. Gumbs, D. Huang, O. Roslyak, Electronic and photonic properties of graphene layers and carbon nanoribbons. Philos. Trans. R. Soc. A 368, 5351–5556 (2010)

    Google Scholar 

  6. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Google Scholar 

  7. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407 (2011)

    Google Scholar 

  8. L.E.F.F. Torres, S. Roche, J. Charlier, Introduction to Graphene-Based Nanomaterials From Electronic Structure to Quantum Transport (Cambridge University Press, 2014). ISBN:9781107030831

    Google Scholar 

  9. C.J. Tabert, E.J. Nicol, Dynamical polarization function, plasmons, and screening in silicene and other buckled honeycomb lattices. Phy. Rev. B 89(19), 195410 (2014)

    Google Scholar 

  10. N.J. Horing, Quantum theory of electron gas plasma oscillations in a magnetic field. Ann. Phys. (NY) 31, 1–63 (1965)

    MathSciNet  Google Scholar 

  11. N.J.M. Horing, Aspects of the theory of graphene. Philos. Trans. R. Soc. A 368(1932), 5525–5556 (2010)

    MathSciNet  Google Scholar 

  12. N.J.M. Horing, Inhomogeneous structure of the nonlocal dynamic dielectric response of a quantum-well bound state and a three dimensional band of extended states. Phys. Rev. B 59(8), 5648 (1999)

    Google Scholar 

  13. N.J.M. Horing, G. Gumbs, T. Park, Coupling of 2D plasmons to nonlocal bulk plasmons. Phys. B 299(1), 165172 (2001)

    Google Scholar 

  14. N.J.M. Horing, Coupling of graphene and surface plasmons. Phys. Rev. B 80(19), 193401 (2009)

    Google Scholar 

  15. P.C. Martin, J. Schwinger, Theory of many-particle systems. I Phys. Rev. 115(6), 1342 (1959)

    MathSciNet  Google Scholar 

  16. R.H. Ritchie, Surface plasmons in solids. Surf. Sci. 34(1), 119 (1973)

    Google Scholar 

  17. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts Mod. Phys. 111, (1988)

    Google Scholar 

  18. H. Raether, Excitations of plasmons and interband transitions by electrons. Springer Tracts Mod. Phys. 88, (1980)

    Google Scholar 

  19. P.J. Feibelman, Surface electromagnetic fields. Prog. Surf. Sci. 12(4), 287407 (1982)

    Google Scholar 

  20. A. Liebsch, Electronic Excitations at Metal Surfaces (Plenum Pub Corp, New York, 1997). ISBN 978-1-4419-3271-6

    Google Scholar 

  21. M.S. Kushwaha, Plasmons and magnetoplasmons in semiconductor heterostructures. Surf. Sci. Rep. 41(1), 1416 (2001)

    Google Scholar 

  22. D.M. Newns, Dielectric response of a semi-infinite degenerate electron gas. Phys. Rev. B 1(8), 3304 (1970)

    Google Scholar 

  23. N.J.M. Horing, E. Kamen, H. Cui, Inverse dielectric function of a bounded solid-state plasma. Phys. Rev. B 32(4), 2184 (1985)

    Google Scholar 

  24. G. Gumbs, A. Iurov, N.J.M. Horing, Non-local plasma spectrum of graphene interacting with a thick conductor. Phys. Rev. B 91(23), (2015)

    Google Scholar 

  25. P.K. Pyatkovskiy, Dynamical polarization, screening, and plasmons in gapped graphene. J. Phys.: Condens. Matter 21(2), 025506 (2009)

    Google Scholar 

  26. B. Wünsch, T. Stauber, F. Sols, F. Guinea, Dynamical polarization of graphene at finite doping. New J. Phys. 8(12), 318 (2006)

    Google Scholar 

  27. E.H. Hwang, S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75(20), 205418 (2007)

    Google Scholar 

  28. M. Rocca, Low-energy investigation of surface electronic excitations on metals. Surf. Sci. Rep. 22(12), 171 (1995)

    Google Scholar 

  29. A. Politano, G. Chiarello, G. Benedek, E.V. Chulkov, P.M. Echenique, Vibrational spectroscopy and theory of alkali metal adsorption and co-adsorption on single-crystal surfaces. Surf. Sci. Rep. 68(3–4), 305–389 (2013)

    Google Scholar 

  30. A. Politano, G. Chiarello, The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films. Prog. Surf. Sci. 90(2), 144–193 (2015)

    Google Scholar 

  31. A. Politano, A.R. Marino, G. Chiarello, Effects of a humid environment on the sheet plasmon resonance in epitaxial graphene. Phys. Rev. B 86, 085420 (2012)

    Google Scholar 

  32. A. Politano, A.R. Marino, V. Formoso, D. Farías, R. Miranda, G. Chiarello, Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys. Rev. B 84, 033401 (2011)

    Google Scholar 

  33. A. Politano, V. Formoso, G. Chiarello, Evidence of composite plasmonphonon modes in the electronic response of epitaxial graphene. J. Phys.: Condens. Matter 25(34), 345303 (2013)

    Google Scholar 

  34. T. Langer, D.F. Förster, C. Busse, T. Michely, H. Pfnür, C. Tegenkamp, Sheet plasmons in modulated graphene on Ir(111). New J. Phys. 13(5), 053006 (2011)

    Google Scholar 

  35. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)

    Google Scholar 

  36. C. Gong, D. Hinojos, W. Wang, N. Nijem, B. Shan, R.M. Wallace, K. Cho, Y.J. Chabal, MetalGrapheneMetal sandwich contacts for enhanced interface bonding and work function control. ACS Nano 6(6), 5381–5387 (2012)

    Google Scholar 

  37. K.L. Grosse, B. Myung-Ho, L.E.P. Feifei, W.P. King, Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. ACS Nano 6(6), 5381–5387 (2012)

    Google Scholar 

  38. C. Gong, S. McDonnell, X. Qin, A. Azcatl, H. Dong, Y.J. Chabal, K. Cho, R.M. Wallace, Realistic metalgraphene contact structures. ACS Nano 8(1), 642649 (2013)

    Google Scholar 

  39. A. Politano, G. Chiarello, Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices. Appl. Phys. Lett. 102(20), 201608 (2013)

    Google Scholar 

  40. J.T. Smith, A.D. Franklin, D.B. Farmer, C.D. Dimitrakopoulos, Reducing contact resistance in graphene devices through contact area patterning. ACS Nano 7(4), 3661–3667 (2013)

    Google Scholar 

  41. C. Archambault, A. Rochefort, States Modulation in Graphene Nanoribbons through Metal Contacts. ACS Nano 7(6), 5414–5420 (2013)

    Google Scholar 

  42. P. Janthon, F. Viñes, S.M. Kozlov, J. Limtrakul, F. Illas, Theoretical assessment of graphene-metal contacts. J. Chem. Phys. 138(24), 244701 (2013)

    Google Scholar 

  43. F. Menges, H. Riel, A. Stemmer, C. Dimitrakopoulos, B. Gotsmann, Thermal transport into graphene through nanoscopic contacts. Phys. Rev. Lett. 111(20), 205901 (2013)

    Google Scholar 

  44. A. Politano, G. Chiarello, Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices. Nanoscale 5(17), 8215–8220 (2013)

    Google Scholar 

  45. V.M. Silkin, A. García-Lekue, J.M. Pitarke, E.V. Chulkov, E. Zaremba, P.M. Echenique, Novel low-energy collective excitation at metal surfaces. EPL (Europhys. Lett.) 66(2), 260 (2004)

    Google Scholar 

  46. V.M. Silkin, J.M. Pitarke, E.V. Chulkov, P.M. Echenique, Acoustic surface plasmons in the noble metals Cu, Ag, and Au. Phys. Rev. B 72(11), 115435 (2005)

    Google Scholar 

  47. M. van Schilfgaarde, M.I. Katsnelson, First-principles theory of nonlocal screening in graphene. Phys. Rev. B 83(8), 081409 (2011)

    Google Scholar 

  48. Y. Gao, Z. Yuan, Anisotropic low-energy plasmon excitations in doped graphene: An ab initio study. Solid State Commun. 151(14), 1009–1013 (2011)

    Google Scholar 

  49. F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Dynamical polarization of graphene under strain. Phys. Rev. B 82(11), 115434 (2010)

    Google Scholar 

  50. A. Politano, G. Chiarello, Emergence of a nonlinear plasmon in the electronic response of doped graphene. Carbon 71, 176–180 (2014)

    Google Scholar 

  51. A. Politano, A.R. Marino, D. Campi, D. Farías, R. Miranda, G. Chiarello, Elastic properties of a macro- scopic graphene sample from phonon dispersion measurements. Carbon 50(13), 4903–4910 (2012)

    Google Scholar 

  52. A. Politano, A.R. Marino, G. Chiarello, Phonon dispersion of quasi-freestanding graphene on Pt (111). J. Phys.: Condens. Matter 24(10), 104025 (2012)

    Google Scholar 

  53. E.H. Hwang, S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75(20), 205418 (2007)

    Google Scholar 

  54. A.V. Gorbach, Nonlinear graphene plasmonics: amplitude equation for surface plasmons. Phys. Rev. A 87(1), 013830 (2013)

    Google Scholar 

  55. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6(11), 737748 (2012)

    Google Scholar 

  56. V. Despoja, D. Novko, K. Dekanić, M. Šunjić, L. Marušić, Two-dimensional and p plasmon spectra in pristine and doped graphene. Phys. Rev. B 87(7), 075447 (2013)

    Google Scholar 

  57. B. Borca, S. Barja, M. Garnica, M. Minniti, A. Politano, J. M. Rodriguez-García, J. J. Hinarejos, D. Farías, A. L. Vásquez de Parga, R. Miranda, Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001). New J. Phys. 12(9), 093018 (2010)

    Google Scholar 

  58. M. Batzill, The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications and, defects. Surf. Sci. Rep. 67(3), 83115 (2012)

    Google Scholar 

  59. J. Wintterlin, M.L. Bocquet, Graphene on metal surfaces. Surf. Sci. 603(10), 1841–1852 (2009)

    Google Scholar 

  60. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P.M. Ajayan, F.H.L. Koppens, P. Nordlander, N.J. Halas, Plasmon-induced doping of graphene. ACS Nano 6(11), 10222–10228 (2012)

    Google Scholar 

  61. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 7(5), 330–334 (2012)

    Google Scholar 

  62. S.Y. Shin, N.D. Kim, J.G. Kim, K.S. Kim, D.Y. Noh, K.S. Kim, J.W. Chung, Control of the p plasmon in a single layer graphene by charge doping. Appl. Phys. Lett. 99(8), 082110 (2011)

    Google Scholar 

  63. M.K. Kinyanjui, C. Kramberger, T. Pichler, J.C. Meyer, P. Wachsmuth, G. Benner, U. Kaiser, Direct probe of linearly dispersing 2D interband plasmons in a free-standing graphene monolayer. EPL (Europhys. Lett.) 97(5), 57005 (2012)

    Google Scholar 

  64. C. Kramberger, R. Hambach, C. Giorgetti, M.H. Rümmeli, M. Knupfer, J. Fink, B. Büchner, Reining Lucia, E. Einarsson, S. Maruyama et al., Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene. Phys. Rev. Lett. 100(19), 196803 (2008)

    Google Scholar 

  65. C. Tegenkamp, H. Pfnür, T. Langer, J. Baringhaus, H.W. Schumacher, Plasmon electronhole resonance in epitaxial graphene. J. Phys.: Condens. Matter 23(1), 012001 (2011)

    Google Scholar 

  66. A. Cupolillo, N. Ligato, L.S. Caputi, Plasmon dispersion in quasifreestanding graphene on Ni(111). Appl. Phys. Lett. 102(11), 111609 (2013)

    Google Scholar 

  67. G. Bertoni, L. Calmels, A. Altibelli, V. Serin, First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface. Phys. Rev. B 71(7), 075402 (2005)

    Google Scholar 

  68. M. Hasegawa, K. Nishidate, T. Hosokai, N. Yoshimoto, Electronic-structure modification of graphene on Ni(111) surface by the intercalation of a noble metal. Phys. Rev. B 78, 085439 (2013)

    Google Scholar 

  69. D. Farias, A.M. Shikin, K.H. Rieder, YuS Dedkov, Synthesis of a weakly bonded graphite monolayer on Ni(111) by intercalation of silver. J. Phys.: Condens. Matter 11(43), 8453 (1999)

    Google Scholar 

  70. A.M. Shikin, D. Farías, V.K. Adamchuk, K. Rieder, Surface phonon dispersion of a graphite monolayer adsorbed on Ni(111) and its modification caused by intercalation of Yb La and Cu layers. Surf. Sci. 424(1), 155–167 (1999)

    Google Scholar 

  71. A. Politano, V.M. Silkin, I.A. Nechaev, M.S. Vitiello, L. Viti, Z.S. Aliev, M.B. Babanly, G. Chiarello, P.M. Echenique, E.V. Chulkov, Interplay of surface and Dirac plasmons in topological insulators: the case of Bi2Se3. Phys. Rev. Lett. (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by contract # FA 9453-13-1-0291 of AFRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. M. Horing .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Dynamic Nonlocal Polarization Function for Free-Standing Graphene with no Bandgap; Brief Summary of the Results Derived in [19, 20]

The 2D RPA density perturbation response function, \(\delta \rho /\delta V = R_{2D}^{(0)} ({\mathbf{p}},\omega ) \equiv D_{0} \widetilde{R}(x,v)\), for free-standing gapless Graphene in the T = 0 degenerate limit is given in terms of dimensionless frequency and wavenumber variables defined by ν = ω/EF = ω/μ and x = p/pF, respectively, as (note that \(D_{0} \equiv \gamma^{ - 1} \sqrt {g_{s} g_{v} \rho_{2D} /\pi }\); gs and gv are spin and valley degeneracies, gs = gv = 2; ℏ → 1):

$$\widetilde{R}(x,\nu ) = \widetilde{R}^{ + } (x,\nu ) + \widetilde{R}^{ - } (x,\nu ),$$
(9.47)

with (θ(z) ≡ η+(z) =  Heaviside unit step function)

$$\widetilde{R}^{ + } (x,\nu ) = \widetilde{R}_{1}^{ + } (x,\nu )\theta (\nu - x) + \widetilde{R}_{2}^{ + } (x,\nu )\theta (x - \nu )$$
(9.48)

where (define \(\widetilde{\varPi } \equiv - \widetilde{R}\))

$$\begin{aligned} - {\text{Re}}\widetilde{R}_{1}^{ + } \left( {x,\nu } \right) & = {\text{Re}}\widetilde{\varPi }_{1}^{ + } \left( {x,\nu } \right) = 1 - \frac{1}{{8\sqrt {\nu^{2} - x^{2} } }}\left\{ f_{1} \left( {x,\nu } \right)\theta \left( {\left| {2 + \nu } \right| - x}\right) \right.\\ & \left. \quad +\, {\text{sgn}}\left( {\nu - 2 + x} \right)f_{1} \left( {x, - \nu } \right)\theta \left( {\left| {2 - \nu } \right| - x} \right) \right. \\ & \left. \quad + f_{2} \left( {x,\nu } \right)\left[ {\theta \left( {x + 2 - \nu } \right) + \theta \left( {2 - x - \nu } \right)} \right]\right\} , \\ \end{aligned}$$
(9.49)
$$\begin{aligned} - {\text{Re}}\widetilde{R}_{2}^{ + } \left( {x,\nu } \right) & = {\text{Re}}\widetilde{\varPi }_{2}^{ + } \left( {x,\nu } \right) = 1 - \frac{1}{{8\sqrt {x^{2} - \nu^{2} } }}\left\{ f_{3} \left( {x,\nu } \right)\theta \left( {x - \left| {\nu + 2} \right|} \right) \right.\\ & \left.\quad + f_{3} \left( {x, - \nu } \right)\theta \left( {x - \left| {\nu - 2} \right|} \right) \right.\\ & \left. \quad + \,\frac{{\pi x^{2} }}{2}\left[ {\theta \left( {\left| {\nu + 2} \right| - x} \right) + \theta \left( {\left| {\nu - 2} \right| - x} \right)} \right]\right\} , \\ \end{aligned}$$
(9.50)
$$\begin{aligned} - {\text{Im}}\widetilde{R}_{1}^{ + } \left( {x,\nu } \right) & = {\text{Im}}\widetilde{\varPi }_{1}^{ + } \left( {x,\nu } \right) = \frac{ - 1}{{8\sqrt {\nu^{2} - x^{2} } }}\left\{ f_{3} \left( {x, - \nu } \right)\theta \left( {x - \left| {\nu - 2} \right|} \right) \right.\\ & \left.\quad + \frac{{\pi x^{2} }}{2}\left[ {\theta \left( {x + 2 - \nu } \right) + \theta \left( {2 - x - \nu } \right)} \right]\right\} , \\ \end{aligned}$$
(9.51)
$$- {\text{Im}}\widetilde{R}_{2}^{ + } \left( {x,\nu } \right) = {\text{Im}}\widetilde{\varPi }_{2}^{ + } \left( {x,\nu } \right) = \frac{{\theta \left( {\nu - x + 2} \right)}}{{8\sqrt {x^{2} - \nu^{2} } }}\left[ {f_{4} \left( {x,\nu } \right) - f_{4} \left( {x, - \nu } \right)\theta \left( {2 - x - \nu } \right)} \right]$$
(9.52)

and

$$- \widetilde{R}^{ - } \left( {x,\nu } \right) = \frac{{\pi x^{2} \theta \left( {x - \nu } \right)}}{{8\sqrt {x^{2} - \nu^{2} } }} + i\frac{{\pi x^{2} \theta \left( {\nu - x} \right)}}{{8\sqrt {\nu^{2} - x^{2} } }}.$$
(9.53)

The quantities f1(x, ν), f2(x, ν), f3(x, ν), f4(x, ν) are defined as

$$f_{1} \left( {x,\nu } \right) = \left( {2 + \nu } \right)\sqrt {\left( {2 + \nu } \right)^{2} - x^{2} } - x^{2} \ln \frac{{\sqrt {\left( {2 + \nu } \right)^{2} - x^{2} } + \left( {2 + \nu } \right)}}{{\left| {\sqrt {\nu^{2} - x^{2} } + \nu } \right|}},$$
(9.54)
$$f_{2} \left( {x,\nu } \right) = x^{2} \ln \frac{{\nu - \sqrt {\nu^{2} - x^{2} } }}{x},$$
(9.55)
$$f_{3} \left( {x,\nu } \right) = \left( {2 + \nu } \right)\sqrt {x^{2} - \left( {2 + \nu } \right)^{2} } + x^{2} \mathop {\sin }\nolimits^{ - 1} \frac{2 + \nu }{x},$$
(9.56)
$$f_{4} \left( {x,\nu } \right) = \left( {2 + \nu } \right)\sqrt {\left( {2 + \nu } \right)^{2} - x^{2} } - x^{2} \ln \frac{{\sqrt {\left( {2 + \nu } \right)^{2} - x^{2} } + \left( {2 + \nu } \right)}}{x}.$$
(9.57)

Appendix 2: Dynamic Nonlocal Polarization Function for Graphene with a Finite Energy Bandgap; Brief Summary of the Results Derived in [18]

The 2D RPA ring diagram polarization function for graphene with a gap Δ may be expressed as

$$\begin{aligned} \varPi_{2D}^{(0)} (q,{\omega }) & = \frac{g}{{4\pi^{2} }}\int d^{2} k\sum\limits_{{s,s^{\prime} = \pm }} \left( {1 + ss^{\prime}\frac{{{\mathbf{k}} \cdot ({\mathbf{k}} + {\mathbf{q}}) +\Delta ^{2} }}{{\varepsilon_{k} \varepsilon_{{\left| {{\mathbf{k}} + {\mathbf{q}}} \right|}} }}} \right) \\ & \quad \times \frac{{f(s{\kern 1pt} \varepsilon_{k} ) - f(s^{\prime}\varepsilon_{{{\mathbf{k}} + q}} )}}{{s\varepsilon_{{\mathbf{k}}} - s^{\prime}\varepsilon_{{{\mathbf{k}} + {\mathbf{q}}}} - \hbar {\omega } - i\hbar {\delta }}} \\ \end{aligned}$$
(9.58)

Since we limit our considerations to zero temperature, T = 0, the Fermi-Dirac distribution function is reduced to the Heaviside step function f(ɛ, μ; T → 0) = η+(μ − ɛ), so (9.58) is simplified to

$$\varPi_{2D}^{(0)} (q,\omega ) = - \chi_{ - }^{\infty } (q,\omega ) + \chi_{ + }^{\mu } (q,\omega ) + \chi_{ - }^{\mu } (q,\omega ){\kern 1pt} ,$$
(9.59)

where

$$\begin{aligned} \chi_{ \pm }^{\alpha } & = \frac{g}{{4\pi^{2} }}\int d^{2} {\mathbf{k}}{\kern 1pt} \eta_{ + } (\alpha^{2} - \varDelta^{2} - q^{2} )\sum\limits_{{s,s^{\prime} = \pm }} \left( {1 \pm ss^{\prime}\frac{{{\mathbf{k}} \cdot ({\mathbf{k}} + {\mathbf{q}}) + \varDelta^{2} }}{{\varepsilon_{k} {\kern 1pt} {\kern 1pt} \varepsilon_{{|{\mathbf{k}} + {\mathbf{q}}|}} }}} \right) \\ & \quad \times \left( {\frac{1}{{\hbar \omega + \varepsilon_{k} \mp \varepsilon_{{|{\mathbf{k}} + {\mathbf{q}}|}} + i\hbar \delta }} - \frac{1}{{\hbar \omega - \varepsilon_{k} \pm \varepsilon_{{|{\mathbf{k}} + {\mathbf{q}}|}} + i\hbar \delta }}} \right) \\ \end{aligned}$$
(9.60)

and

$$\varPi_{2D}^{(0)} (q,\omega ) = \varPi_{(0)} (q,\omega ) + \eta_{ + } (\mu -\Delta )\varPi_{(1)} (q,\omega ),$$
(9.61)

where

$$\begin{aligned} \varPi_{(0)} (q,\omega ) & = - \chi_{ - }^{\infty } (q,\omega ) \\ \varPi_{(1)} (q,\omega ) & = \chi_{ + }^{\mu } (q,\omega ) + \chi_{ - }^{\mu } (q,\omega ). \\ \end{aligned}$$
(9.62)

The following notations are employed to specify the expressions involved in the polarization function:

$${\mathcal{F}}(q,\omega ) = \frac{{g{\kern 1pt} \hbar v_{F}^{2} }}{16\pi }\frac{{q^{2} }}{{\sqrt {|\omega^{2} - (v_{F} q)^{2} |} }}$$
(9.63)

and

$${\mathcal{X}}_{0} = \sqrt {1 - \frac{{4\Delta ^{2} }}{{\hbar^{2} \left( {\omega^{2} - (v_{F} q)^{2} } \right)}}} ,$$
(9.64)

along with definitions of the following functions:

$${\mathcal{G}}_{ < } (x) = x\sqrt {{\mathcal{X}}_{0}^{2} - x^{2} } - (2 - {\mathcal{X}}_{0} ){\kern 1pt} \arccos (x/{\mathcal{X}}_{0} ),$$
(9.65)
$${\mathcal{G}}_{ > } (x) = x\sqrt {x^{2} - {\mathcal{X}}_{0}^{2} } - (2 - {\mathcal{X}}_{0} ){\kern 1pt} {\text{arccosh}}(x/{\mathcal{X}}_{0} ),$$
(9.66)
$${\mathcal{G}}_{ > } (x) = x\sqrt {x^{2} - {\mathcal{X}}_{0}^{2} } - (2 - {\mathcal{X}}_{0} ){\text{arcsinh}}(x/\sqrt { - {\mathcal{X}}_{0}^{2} } ).$$
(9.67)

Finally, the polarization function is given in the following form:

Real part

$$\begin{aligned} {\text{Re}}\varPi^{(0)} (q,\omega ) & = - \frac{g\mu }{{\hbar^{2} v_{F}^{2} }} + {\mathcal{F}}(q,\omega ) \\ & \quad \times \,\left\{ {\begin{array}{*{20}l} 0 \hfill & \Rightarrow \hfill & {Q_{1} } \hfill \\ {{\mathcal{G}}_{ < } \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {Q_{2} } \hfill \\ {{\mathcal{G}}_{ < } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right) + {\mathcal{G}}_{ < } \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {Q_{3} } \hfill \\ {{\mathcal{G}}_{ > } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right) - {\mathcal{G}}_{ < } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {Q_{4} } \hfill \\ {{\mathcal{G}}_{ > } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right) - {\mathcal{G}}_{ < } \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {\varOmega_{1} } \hfill \\ {{\mathcal{G}}_{ > } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {\varOmega_{2} } \hfill \\ {{\mathcal{G}}_{ > } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right) - {\mathcal{G}}_{ > } \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {\varOmega_{3} } \hfill \\ {{\mathcal{G}}_{ > } \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right) + {\mathcal{G}}_{ > } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {\varOmega_{4} } \hfill \\ {{\mathcal{G}}_{0} \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right) - {\mathcal{G}}_{0} \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {\varOmega_{1} } \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(9.68)

Imaginary part

$$\begin{aligned} {\text{Im}}\varPi^{(0)} (q,\omega ) & = - {\mathcal{F}}(q,\omega ) \\ & \quad \times \,\left\{ {\begin{array}{*{20}l} {{\mathcal{G}}_{ > } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right) - {\mathcal{G}}_{ > } \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {Q_{1} } \hfill \\ {{\mathcal{G}}_{ > } \left( {\frac{{\mathcal{P}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {Q_{2} } \hfill \\ 0 \hfill & \Rightarrow \hfill & {Q_{3} } \hfill \\ 0 \hfill & \Rightarrow \hfill & {Q_{4} } \hfill \\ 0 \hfill & \Rightarrow \hfill & {\varOmega_{1} } \hfill \\ { - {\mathcal{G}}_{ < } \left( {\frac{{\mathcal{M}}}{{\hbar v_{F} q}}} \right)} \hfill & \Rightarrow \hfill & {\varOmega_{2} } \hfill \\ {\pi \left[ {2 - {\mathcal{X}}_{0}^{2} } \right]} \hfill & \Rightarrow \hfill & {\varOmega_{3} } \hfill \\ {\pi \left[ {2 - {\mathcal{X}}_{0}^{2} } \right]} \hfill & \Rightarrow \hfill & {\varOmega_{4} } \hfill \\ 0 \hfill & \Rightarrow \hfill & {\varOmega_{5} } \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(9.69)

where

$${\mathcal{P}} = 2\upmu + \hbar \omega \;{\text{and}}\;{\mathcal{M}} = 2\upmu - \hbar \omega .$$
(9.70)

The analytic expressions provided in the left columns above for the real and imaginary parts of Π0 pertain to the frequency wavenumber regions marked by the Q’s and Ω’s in the corresponding right column as indicated in Fig. 9.4. Specifically, these ω-q regions are defined as follows:

$$\begin{array}{*{20}l} {Q_{1} } \hfill & \Rightarrow \hfill & {\hbar \omega < \mu - \sqrt {\left( {\hbar v_{F} } \right)^{2} (q - k_{F}^{\mu } )^{2} + \varDelta^{2} } } \hfill \\ {Q_{2} } \hfill & \Rightarrow \hfill & { \pm \mu \mp \sqrt {\left( {\hbar v_{F} } \right)^{2} (q - k_{F}^{\mu } )^{2} + \varDelta^{2} } < \hbar \omega < } \hfill \\ {} \hfill & {} \hfill & { - \mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q + k_{F}^{\mu } )^{2} + \varDelta^{2} } } \hfill \\ {Q_{3} } \hfill & \Rightarrow \hfill & {\hbar \omega < - \mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q_{{}} + k_{F}^{\mu } )^{2} + \varDelta^{2} } } \hfill \\ {Q_{4} } \hfill & \Rightarrow \hfill & { - \mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q + k_{F}^{\mu } )^{2} + \varDelta^{2} } < \hbar \omega < \hbar v_{F} q,} \hfill \\ \end{array}$$
(9.71)

and

$$\begin{array}{*{20}l} {\varOmega_{1} } \hfill & \Rightarrow \hfill & {q < 2k_{F} \quad \& \quad \sqrt {\left( {\hbar v_{F} } \right)^{2} q^{2} + 4\varDelta^{2} } < \hbar \omega < } \hfill \\ {} \hfill & {} \hfill & { < - \mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q - k_{F}^{\mu } )^{2} + \varDelta^{2} } } \hfill \\ {\varOmega_{2} } \hfill & \Rightarrow \hfill & {\mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q - k_{F}^{\mu } )^{2} + \varDelta^{2} } < } \hfill \\ {} \hfill & {} \hfill & {\mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q - k_{F}^{\mu } )^{2} + \varDelta^{2} } } \hfill \\ {\varOmega_{3} } \hfill & \Rightarrow \hfill & {\hbar \omega > \mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q + k_{F}^{\mu } )^{2} + \varDelta^{2} } } \hfill \\ {\varOmega_{4} } \hfill & \Rightarrow \hfill & {q > 2k_{F} \quad \& \quad \sqrt {\left( {\hbar v_{F} } \right)^{2} q^{2} + 4\varDelta^{2} } < \hbar \omega < } \hfill \\ {} \hfill & {} \hfill & { < - \mu + \sqrt {\left( {\hbar v_{F} } \right)^{2} (q - k_{F}^{\mu } )^{2} + \varDelta^{2} } } \hfill \\ {\varOmega_{5} } \hfill & \Rightarrow \hfill & {\hbar v_{F} q < \hbar \omega < \sqrt {\left( {\hbar v_{F} } \right)^{2} q^{2} + 4\varDelta^{2} } .} \hfill \\ \end{array}$$
(9.72)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horing, N.J.M., Iurov, A., Gumbs, G., Politano, A., Chiarello, G. (2016). Recent Progress on Nonlocal Graphene/Surface Plasmons. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_9

Download citation

Publish with us

Policies and ethics