Skip to main content

Microfluidics and Its Applications in Bionanotechnology

  • Chapter
  • First Online:
  • 2443 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Several advantages of microfluidic systems such as rapid control, reduced size, low costs, large-scale integration and in vivo simulation of cellular microenvironments make them suitable for diverse bionanotechnological applications. This chapter reviews major current and potential microfluidic applications in bionanotechnology, including miniaturized devices related to common molecular biological techniques such as polymerase chain reaction (PCR), DNA microarray and electrophoresis; microfluidic bioreactors; and monitoring microbial behaviour by microfluidics. Additionally, present applications and future potential of microfluidics in microbial strain development and single cell analysis/characterization are discussed.

This is a preview of subscription content, log in via an institution.

References

  1. NanoInk Inc. (2010) Introduction to nanoscale science and technology, Version 1, Chapter 5, Introduction to Nanobiology (Illinois, USA), pp. 162–209

    Google Scholar 

  2. J. Cooper McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000)

    Google Scholar 

  3. G. Velve-Casquillas, M. Le Berre, M. Piel, P.T. Tran, Microfluidic tools for cell biological research. Nano Today 5, 28–47 (2010)

    Google Scholar 

  4. C.J. Campbell, B.A. Grzybowski, Microfluidic mixers: from microfabricated to self-assembling devices. Philos. Trans. A Math. Phys. Eng. Sci. 362, 1069–1086 (2004)

    Google Scholar 

  5. E.-S. Kim, E.H. Ahn, E. Chung, D.-H. Kim, Recent advances in nanobiotechnology and high-throughput molecular techniques for systems biomedicine. Mol. Cells 36, 477–484 (2013)

    Google Scholar 

  6. S.J. Maerkl, S.R. Quake, A systems approach to measuring the binding energy landscapes of transcription factors. Science 315, 233–237 (2007)

    Google Scholar 

  7. E.A. Ottesen, J.W. Hong, S.R. Quake, J.R. Leadbetter, Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314, 1464–1467 (2006)

    Google Scholar 

  8. J. Kim, M. Junkin, D.H. Kim, S. Kwon, Y.S. Shin, P.K. Wong, B.K. Gale, Applications, techniques, and microfluidic interfacing for nanoscale biosensing. Microfluid. Nanofluid. 7, 149–167 (2009)

    Google Scholar 

  9. V. Sanchez-Freire, A.D. Ebert, T. Kalisky, S.R. Quake, J.C. Wu, Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat. Protoc. 7, 829–838 (2012)

    Google Scholar 

  10. J.H. Tsui, W. Lee, S.H. Pun, J. Kim, D.H. Kim, Microfluidics-assisted in vitro drug screening and carrier production. Adv. Drug Deliv. Rev. 65, 1575–1588 (2013)

    Google Scholar 

  11. Y. Zhang, Y. Tang, Y.H. Hsieh, C.Y. Hsu, J. Xi, K.J. Lin, X. Jiang, Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics. Lab Chip 12, 3012–3015 (2012)

    Google Scholar 

  12. C.S. Zhang, J.L. Xu, W.L. Ma, W.L. Zheng, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24, 243–284 (2006)

    Google Scholar 

  13. G. Munchow, D. Dadic, F. Daffing, S. Hardt, K.S. Drese, Automated chip-based device for simple and fast nucleic acid amplification. Expert Rev. Mol. Diagn. 5, 613–620 (2005)

    Google Scholar 

  14. P.N. Ngatchou, M.R. Holl, C.H. Fisher, M.S. Saini, J.C. Dong, T.T.H. Ren, W.H. Pence, D.L. Cunningham, S.E. Moody, D.A. Donaldson, D.R. Meldrum, A real-time PCR analyzer compatible with high-throughput automated processing of 2 µL reactions in glass capillaries. IEEE Trans. Autom. Sci. Eng. 3, 141–151 (2006)

    Google Scholar 

  15. M. Hashimoto, F. Barany, S.A. Soper, Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosens. Bioelectron. 21, 1915–1923 (2006)

    Google Scholar 

  16. K.M. Horsman, J.M. Bienvenue, K.R. Blasier, J.P. Landers, Forensic DNA analysis on microfluidic devices: a review. J. Forensic Sci. 52, 784–799 (2007)

    Google Scholar 

  17. C. Hurth, S.D. Smith, A.R. Nordquist, R. Lenigk, B. Duane, D. Nguyen, A. Surve, A.J. Hopwood, M.D. Estes, J.N. Yang, Z. Cai, X.J. Chen, J.G. Lee-Edghill, N. Moran, K. Elliott, G. Tully, F. Zenhausern, An automated instrument for human STR identification: design, characterization, and experimental validation. Electrophoresis 31, 3510–3517 (2010)

    Google Scholar 

  18. T. Geng, R.A. Mathies, Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics. Forensic Sci. Int-Genetics 14, 203–209 (2015)

    Google Scholar 

  19. N.R. Beer, B.Y. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, B.W. Colston, On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal. Chem. 79, 8471–8475 (2007)

    Google Scholar 

  20. T.D. Rane, H.C. Zec, C. Puleo, A.P. Lee, T.H. Wang, Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip 12, 3341–3347 (2012)

    Google Scholar 

  21. D.K. Kang, M.M. Ali, K.X. Zhang, E.J. Pone, W.A. Zhao, Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. Trac-Trend Anal. Chem. 58, 145–153 (2014)

    Google Scholar 

  22. H. Zec, D.J. Shin, T.H. Wang, Novel droplet platforms for the detection of disease biomarkers. Expert Rev. Mol. Diagn. 14, 787–801 (2014)

    Google Scholar 

  23. L.J. Chien, J.H. Wang, T.M. Hsieh, P.H. Chen, P.J. Chen, D.S. Lee, C.H. Luo, G.B. Lee, A micro circulating PCR chip using a suction-type membrane for fluidic transport. Med. Microdevices 11, 359–367 (2009)

    Google Scholar 

  24. Z.R. Xu, X. Wang, X.F. Fan, J.H. Wang, An extrusion fluidic driving method for continuous-flow polymerase chain reaction on a microfluidic chip. Microchim. Acta 168, 71–78 (2010)

    Google Scholar 

  25. G. Czilwik, I. Schwarz, M. Keller, S. Wadle, S. Zehnle, F. von Stetten, D. Mark, R. Zengerle, N. Paust, Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules. Lab Chip 15, 1084–1091 (2015)

    Google Scholar 

  26. Y. Luo, B.B. Bhattacharya, T.Y. Ho, K. Chakrabarty, Design and optimization of a cyberphysical digital-microfluidic biochip for the polymerase chain reaction. IEEE Trans. Comput. Aid. D 34, 29–42 (2015)

    Google Scholar 

  27. C. Situma, M. Hashimoto, S.A. Soper, Merging microfluidics with microarray-based bioassays. Biomol. Eng. 23, 213–231 (2006)

    Google Scholar 

  28. L. Wang, P.C.H. Li, Microfluidic DNA microarray analysis: a review. Anal. Chim. Acta 687, 12–27 (2011)

    Google Scholar 

  29. M. Dufva, J. Petersen, L. Poulsen, Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies. Anal. Bioanal. Chem. 395, 669–677 (2009)

    Google Scholar 

  30. Y. Zhang, T.H. Wang, Quantum dot enabled molecular sensing and diagnostics. Theranostics 2, 631–654 (2012)

    Google Scholar 

  31. L. Bissonnette, M.G. Bergeron, Next revolution in the molecular theranostics of infectious diseases: microfabricated systems for personalized medicine. Expert Rev. Mol. Diagn. 6, 433–450 (2006)

    Google Scholar 

  32. D.A. Khodakov, A.V. Ellis, Recent developments in nucleic acid identification using solid-phase enzymatic assays. Microchim. Acta 181, 1633–1646 (2014)

    Google Scholar 

  33. K.A. Gilbride, D.Y. Lee, L.A. Beaudette, Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J. Microbiol. Meth. 66, 1–20 (2006)

    Google Scholar 

  34. J. Mairhofer, K. Roppert, P. Ertl, Microfluidic systems for pathogen sensing: a review. Sensors 9, 4804–4823 (2009)

    Google Scholar 

  35. L.M. Borland, S. Kottegoda, K.S. Phillips, N.L. Allbritton, Chemical analysis of single cells. Annu. Rev. Anal. Chem. 1, 191–227 (2008)

    Google Scholar 

  36. E.R. Castro, A. Manz, Present state of microchip electrophoresis: state of the art and routine applications. J. Chromatogr. A 1382, 66–85 (2015)

    Google Scholar 

  37. A.P. Lewis, A. Cranny, N.R. Harris, N.G. Green, J.A. Wharton, R.J.K. Wood, K.R. Stokes, Review on the development of truly portable and in-situ capillary electrophoresis systems. Meas. Sci. Technol. 24, 042001 (2013)

    Google Scholar 

  38. W. Wang, F. Zhou, L. Zhao, J.R. Zhang, J.J. Zhu, Measurement of electroosmotic flow in capillary and microchip electrophoresis. J. Chromatogr. A 1170, 1–8 (2007)

    Google Scholar 

  39. M. Pumera, Contactless conductivity detection for microfluidics: designs and applications. Talanta 74, 358–364 (2007)

    Google Scholar 

  40. J.M. Karlinsey, Sample introduction techniques for microchip electrophoresis: a review. Anal. Chim. Acta 725, 1–13 (2012)

    Google Scholar 

  41. S. Yamamoto, In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis. Yakugaku Zasshi 132, 1031–1035 (2012)

    Google Scholar 

  42. C.L. Colyer, T. Tang, N. Chiem, D.J. Harrison, Clinical potential of microchip capillary electrophoresis systems. Electrophoresis 18, 1733–1741 (1997)

    Google Scholar 

  43. M. Pumera, Analysis of nerve agents using capillary electrophoresis and laboratory-on-a-chip technology. J. Chromatogr. A 1113, 5–13 (2006)

    Google Scholar 

  44. M. Koel, M. Borissova, M. Vaher, M. Kaljurand, Developments in the application of Green Chemistry principles to food analysis: capillary electrophoresis for the analysis of ingredients in food products. Agro Food Ind Hi Tec 22, 27–29 (2011)

    Google Scholar 

  45. M. Kaljurand, M. Koel, Recent advancements on greening analytical separation. Crit. Rev. Anal. Chem. 41, 2–20 (2011)

    Google Scholar 

  46. I. Kustos, B. Kocsis, F. Kilar, Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev. Proteomic 4, 91–106 (2007)

    Google Scholar 

  47. H. Chen, Z.H. Fan, Two-dimensional protein separation in microfluidic devices. Electrophoresis 30, 758–765 (2009)

    Google Scholar 

  48. G.J. Sommer, A.V. Hatch, IEF in microfluidic devices. Electrophoresis 30, 742–757 (2009)

    Google Scholar 

  49. R.T. Turgeon, M.T. Bowser, Micro free-flow electrophoresis: theory and applications. Anal. Bioanal. Chem. 394, 187–198 (2009)

    Google Scholar 

  50. Y.C. Pan, K. Karns, A.E. Herr, Microfluidic electrophoretic mobility shift assays for quantitative biochemical analysis. Electrophoresis 35, 2078–2090 (2014)

    Google Scholar 

  51. R.A. Saylor, S.M. Lunte, A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J. Chromatogr. A 1382, 48–64 (2015)

    Google Scholar 

  52. L.J. Lee, BioMEMS and micro-/nano-processing of polymers—an overview. J. Chin. Inst. Chem. Eng, 34, 25–46 (2003)

    Google Scholar 

  53. E. Leclerc, Y. Sakai, T. Fujii, Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol Progr 20, 750–755 (2004)

    Google Scholar 

  54. M. Reichen, R.J. Macown, N. Jaccard, A. Super, L. Ruban, L.D. Griffin, F.S. Veraitch, N. Szita, Microfabricated modular scale-down device for regenerative medicine process development. PLoS ONE 7, e52246 (2012)

    Google Scholar 

  55. N. Jaccard, R.J. Macown, A. Super, L.D. Griffin, F.S. Veraitch, N. Szita, Automated and online characterization of adherent cell culture growth in a microfabricated bioreactor. JALA 19, 437–443 (2014)

    Google Scholar 

  56. H.L.N. Vu, Y.W. Li, M. Casali, D. Irimia, Z. Megeed, M.L. Yarmush, A microfluidic bioreactor for increased active retrovirus output. Lab Chip 8, 75–80 (2008)

    Google Scholar 

  57. S.T. Yang, X.D. Zhang, Y. Wen, Microbioreactors for high-throughput cytotoxicity assays. Curr. Opin. Drug Disc. 11, 111–127 (2008)

    Google Scholar 

  58. A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, F. Baudenbacher, NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale. Biomed. Microdevices 6, 325–339 (2004)

    Google Scholar 

  59. N. Korin, A. Bransky, U. Dinnar, S. Levenberg, Periodic ‘flow-stop’ perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomed. Microdevices 11, 87–94 (2009)

    Google Scholar 

  60. M. Khoury, A. Bransky, N. Korin, L.C. Konak, G. Enikolopov, I. Tzchori, S. Levenberg, A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates. Biomed. Microdevices 12, 1001–1008 (2010)

    Google Scholar 

  61. A. Schober, U. Fernekorn, S. Singh, G. Schlingloff, M. Gebinoga, J. Hampl, A. Williamson, Mimicking the biological world: methods for the 3D structuring of artificial cellular environments. Eng. Life Sci. 13, 352–367 (2013)

    Google Scholar 

  62. A. Schober, U. Fernekorn, B. Lubbers, J. Hampl, F. Weise, G. Schlingloff, M. Gebinoga, M. Worgull, M. Schneider, C. Augspurger, C. Hildmann, M. Kittler, M. Donahue, Applied nano bio systems with microfluidics and biosensors for three-dimensional cell culture. Materialwiss Werkst 42, 139–146 (2011)

    Google Scholar 

  63. F. Lapierre, N.R. Cameron, J. Oakeshott, T. Peat, Y.G. Zhu, How to fabricate robust microfluidic systems for a dollar. Micro/Nano Materials, Devices, and Systems, Book Series: Proceedings of SPIE 3, 89232Y (2013)

    Google Scholar 

  64. K.V. Gernaey, F. Baganz, E. Franco-Lara, F. Kensy, U. Kruhne, M. Luebberstedt, U. Marx, E. Palmqvist, A. Schmid, F. Schubert, C.F. Mandenius, Biotechnol. J. 7, 1308–1314 (2012)

    Google Scholar 

  65. D. Sud, G. Mehta, K. Mehta, J. Linderman, S. Takayama, M.A. Mycek, Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture. J. Biomed. Opt. 11, 050504 (2006)

    Google Scholar 

  66. L.L. Bell, A.A. Seshia, C.A.B. Davidson, C.R. Lowe, Integration of holographic sensors into microfluidics for the real-time pH sensing of L. casei. Eurosensors XXIV Conference, Book series: Procedia Engineering 5, 1352–1355 (2010)

    Google Scholar 

  67. S. Talaei, O. Frey, S. Psoma, P.D. van der Wal, N.F. de Rooij, Smart SU-8 pillars implemented in a microfluidic bioreactor for continuous measurement of glucose. Eurosensors XXIV Conference, Book series: Procedia Engineering 5, 448–451 (2010)

    Google Scholar 

  68. W.B. Zimmerman, V. Tesar, H.C.H. Bandulasena, Towards energy efficient nanobubble generation with fluidic oscillation. Curr. Opin. Colloid Interface 16, 350–356 (2011)

    Google Scholar 

  69. S.N. Masand, L. Mignone, J.D. Zahn, D.I. Shreiber, Nanoporous membrane-sealed microfluidic devices for improved cell viability. Biomed. Microdevices 13, 955–961 (2011)

    Google Scholar 

  70. K.G. Lee, J. Hong, K.W. Wang, N.S. Heo, D.H. Kim, S.Y. Lee, S.J. Lee, T.J. Park, In vitro biosynthesis of metal nanoparticles in microdroplets. ACS Nano 6, 6998–7008 (2012)

    Google Scholar 

  71. B. Steinhaus, M.L. Garcia, A.Q. Shen, L.T. Angenent, A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl. Environ. Microbiol. 73, 1653–1658 (2007)

    Google Scholar 

  72. S.H. Au, S.C.C. Shih, A.R. Wheeler, Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed. Microdevices 13, 41–50 (2011)

    Google Scholar 

  73. R. Rusconi, M. Garren, R. Stocker, Microfluidics expanding the frontiers of microbial ecology. Ann. Rev. Biophys. 43, 65–91 (2014)

    Google Scholar 

  74. L. Richter, C. Stepper, A. Mak, A. Reinthaler, R. Heer, M. Kast, H. Bruckl, P. Ertl, Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab Chip 7, 1723–1731 (2007)

    Google Scholar 

  75. A. Kumar, D. Karig, R. Acharya, S. Neethirajan, P.P. Mukherjee, S. Retterer, M.J. Doktycz, Microscale confinement features can affect biofilm formation. Microfluid. Nanofluid. 14, 895–902 (2013)

    Google Scholar 

  76. T. Ahmed, T.S. Shimizu, R. Stocker, Microfluidics for bacterial chemotaxis. Integr. Biol. 2, 604–629 (2010)

    Google Scholar 

  77. J.R. Seymour, R. Simo, T. Ahmed, R. Stocker, Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010)

    Google Scholar 

  78. S. Arora, C.S. Lim, J.Y. Foo, M.K. Sakharkar, P. Dixit, A.Q. Liu, J.M. Miao, Microchip system for monitoring microbial physiological behaviour under drug influences. J. Eng. Med. 223, 777–786 (2009)

    Google Scholar 

  79. J.R. Graff, S.R. Forschner-Dancause, S. Menden-Deuer, R.A. Long, D.C. Rowley, Vibrio cholerae exploits sub-lethal concentrations of a competitor-produced antibiotic to avoid toxic interactions. Front Microbiol. 4, 8 (2013)

    Google Scholar 

  80. Z.N. Hou, Y. An, K. Hjort, K. Hjort, L. Sandegren, Z.G. Wu, Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab Chip 14, 3409–3418 (2014)

    Google Scholar 

  81. J.L. Connell, J. Kim, J.B. Shear, A.J. Bard, M. Whiteley, Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc. Natl. Acad. Sci. USA 111, 18255–18260 (2014)

    Google Scholar 

  82. H.M. Hegab, A. ElMekawy, T. Stakenborg, Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics 7, 021502 (2013)

    Google Scholar 

  83. E.S. Kim, Directed evolution: a historical explanation into an evolutionary experimental system of nanobiotechnology, 1965-2006. Minerva 46, 463–484 (2008)

    Google Scholar 

  84. Z.P. Çakar, Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnol. J. 4, 992–1002 (2009)

    Google Scholar 

  85. C. Alkım, B. Turanlı-Yıldız, Z.P. Çakar, Evolutionary engineering of yeast, in Yeast metabolic engineering: methods and protocols, Method Mol Biol: 1152, ed. by V. Mapelli (Humana Press, Dordrecht, 2014), pp. 169–183

    Google Scholar 

  86. Z.P. Çakar, U.O.S. Seker, C. Tamerler, M. Sonderegger, U. Sauer, Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 5, 569–578 (2005)

    Google Scholar 

  87. Z.P. Çakar, C. Alkim, B. Turanli, N. Tokman, S. Akman, M. Sarikaya, C. Tamerler, L. Benbadis, J.M. Francois, Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J. Biotechnol. 143, 130–138 (2009)

    Google Scholar 

  88. G. Küçükgöze, C. Alkım, Ü. Yılmaz, H.I. Kısakesen, S. Gündüz, S. Akman, Z.P. Çakar, Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae. FEMS Yeast Res. 13, 731–746 (2013)

    Google Scholar 

  89. C. Alkim, L. Benbadis, U. Yilmaz, Z.P. Cakar, J.M. François, Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering. Metallomics 5, 1043–1060 (2013)

    Google Scholar 

  90. Z.P. Çakar, B. Turanlı-Yıldız, C. Alkım, Ü. Yılmaz, Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 12, 171–182 (2012)

    Google Scholar 

  91. A. Grunberger, W. Wiechert, D. Kohlheyer, Single-cell microfluidics: opportunity for bioprocess development. Curr. Opin. Biotechnol. 29, 15–23 (2014)

    Google Scholar 

  92. W.L. Tang, N. Xiang, D. Huang, X.J. Zhang, X.Z. Gu, Z.H. Ni, Micro-fluidics-based single-cell biophysical characterization. Prog. Chem. 26, 1050–1064 (2014)

    Google Scholar 

  93. R.N. Zare, S. Kim, Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 12, 187–201 (2010)

    Google Scholar 

  94. L.F. Kang, B.G. Chung, R. Langer, A. Khademhosseini, Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov. Today 13, 1–13 (2008)

    Google Scholar 

  95. D. Lombardi, P.S. Dittrich, Advances in microfluidics for drug discovery. Expert Opin. Drug Discov. 5, 1081–1094 (2010)

    Google Scholar 

  96. N.T. Nguyen, S.A.M. Shaegh, N. Kashaninejad, D.T. Phan, Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliver Rev. 65, 1403–1419 (2013)

    Google Scholar 

  97. E. Cimetta, G. Vunjak-Novakovic, Microscale technologies for regulating human stem cell differentiation. Exp. Biol. Med. 239, 1255–1263 (2014)

    Google Scholar 

  98. P.C. Blainey, The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013)

    Google Scholar 

  99. F.J.H. Hol, C. Dekker, Zooming into see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014)

    Google Scholar 

Download references

Acknowledgments

Our research presented in this chapter was supported by the COST Action CM0902, Turkish Scientific and Technological Research Council (TÜBİTAK) (project no: 105T314, 107T284, 109T638, PI: ZPÇ), Istanbul Technical University (ITU) Research Funds (project no: 30108, 34200, PI: ZPÇ). BS is financially supported by the Faculty Member Training Programme (ÖYP) of the Council of Higher Education (YÖK) in Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Çakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Çakar, Z.P., Sönmez, B. (2016). Microfluidics and Its Applications in Bionanotechnology. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_24

Download citation

Publish with us

Policies and ethics