Skip to main content

Aspects of the Modeling of Low Dimensional Quantum Systems

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

  • 2354 Accesses

Abstract

The mathematical modeling of low dimensional quantum systems is discussed in this chapter. In particular, the use of generalized functions in such modeling is illustrated in some detail, including applications of the Dirac delta function and its derivative (“delta-prime”) in determining quantum mechanical Schrödinger Green’s functions describing the dynamics of various low dimensional systems. The illustrations include quantum dots, wires and wells (and a superlattice) in various dimensions. Also, the one-dimensional “delta-prime” potential is shown to provide an impenetrable barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. V. Fessatidis, N.J.M. Horing, K. Sabeeh, Philos. Mag. B79, 77 (1999)

    Article  ADS  Google Scholar 

  2. A. Erdelyi, Higher Transcendental Functions. vol. II, Eq. (17), p. 189. (McGraw-Hill, New York, 1953)

    Google Scholar 

  3. N.J.M. Horing, Quantum Statistical Field Theory: Schwinger’s Variational Method. (Oxford University Press, to be published)

    Google Scholar 

  4. A. Erdelyi, Higher Transcendental Functions, vol. II, Eq. (33), p. 8. (McGraw-Hill, New York, 1953)

    Google Scholar 

  5. N. Horing, M. Yildiz, Ann. Phys. (NY) 97, 216–241 (1976)

    Article  ADS  Google Scholar 

  6. A. Erdelyi, Higher Transcendental Functions, vol. II, Eq. (32), p. 195. (McGraw-Hill, New York, 1953)

    Google Scholar 

  7. A. Erdelyi, Tables of Integral Transforms, vol. I. (McGraw-Hill, New York, 1954)

    Google Scholar 

  8. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1965)

    Google Scholar 

  9. P.B. Visscher, L.M. Falicov, Phys. Rev. B 3, 2541 (1971)

    Article  ADS  Google Scholar 

  10. D. Grecu, Phys. Rev. B 8, 1958 (1972)

    Article  ADS  Google Scholar 

  11. A.L. Fetter, Ann. Phys. (N. Y.) 88, 1 (1974)

    Google Scholar 

  12. M. Apostol, Z. Phys, B 22, 13 (1975)

    Google Scholar 

  13. M. Kobayashi et al., J. Phys. Soc. Jpn. 39, 18 (1975)

    Article  ADS  Google Scholar 

  14. J. Mizuno et al., J. Phys. Soc. Jpn. 39, 983 (1975)

    Article  ADS  Google Scholar 

  15. A. Caille et al., Solid State Commun. 24, 805 (1977)

    Article  ADS  Google Scholar 

  16. L. Bloss and E. M., Brody, Solid State Commun. 43, 523 (1982)

    Google Scholar 

  17. W.L. Bloss, Solid State Commun. 44, 363 (1982)

    Article  ADS  Google Scholar 

  18. D. Olego et al., Phys. Rev. B 25, 7867 (1982)

    Article  ADS  Google Scholar 

  19. P. Ruden, G.H. Dohler, Phys. Rev. B 27, 3538 (1983)

    Article  ADS  Google Scholar 

  20. P. Ruden, G.H. Dohler, Phys. Rev. B 27, 3547 (1983)

    Article  ADS  Google Scholar 

  21. S. Das Sarma, A. Madhukar, Phys. Rev. B 23, 805 (1981); S. Das Sarma, J.J. Quinn, ibid. 25, 7603 (1982); 27, 6516 (1983)

    Google Scholar 

  22. S. Das Sarma, Phys. Rev. B 28, 2240 (1983); Appl. Surf. Sci. 11/12, 535 (1982)

    Google Scholar 

  23. G.G. de la Cruz et al., J. Phys. Chem. Solids 44, 807 (1983)

    Article  ADS  Google Scholar 

  24. A.C. Tselis, J.J. Quinn, Phys. Rev. B 29, 2021 (1984); 29, 3318 (1984)

    Google Scholar 

  25. P.L. Christiansen, H.C. Arnbak, A.V. Zolotaryuk, V.N. Ermakov, Y.B. Gaididei, J. Phys. A: Math. Gen. 36, 7589 (2003)

    Article  ADS  Google Scholar 

  26. F.A.B. Coutinho, Y. Nogami, J. Fernando Perez; J Phys. A. Math. Gen. 30, 3937 (1997)

    Google Scholar 

  27. Y. Golovaty; arXiv:1201.2610v1 [math.SP] 12 Jan 2012

  28. P. Šeba, Rep. Math. Phys. 24, 111 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  29. F.M. Toyama, Y. Nogami, J. Phys. A: Math. Theor. 40, F685 (2007)

    Article  ADS  Google Scholar 

  30. M. Gadella, M.L. Glasser, L.M. Nieto, Int. J. Theor. Phys. 50, 2144 (2011)

    Article  Google Scholar 

  31. M. Gadella, J. Negro, L.M. Nieto, Phys. Lett. A 373, 1310 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Gadella, M.L. Glasser, L.M. Nieto, Int. J. Theor. Phys. 50, 2191 (2011)

    Article  Google Scholar 

  33. J.J. Alvarez, M. Gadella, M.L. Glasser, L.P. Lara, L.M. Nieto, J. Phys: Conf. Ser. 284, 012009 (2011)

    Google Scholar 

  34. A.V. Zolotaryuk, Y. Zolotaryuk, arXiv:1202.1117v1 [math-ph] 6 Feb 2012

  35. J.F. Brasche, L. Nizhnik, arXiv:1112.2545v1 [math.FA] 12 Dec 2011

  36. P. Kurasov, Math. Anal. Appl. 201, 297 (1996)

    Article  MathSciNet  Google Scholar 

  37. S. Kocinak, V. Milanovic, Mod. Phys. Lett. B 26, 1250092 (2012)

    Article  ADS  Google Scholar 

  38. D.K. Park, J. Phys. A Math.: Gen. 29, 6407 (1996)

    Google Scholar 

  39. Haydar Uncu, Devrim Tarhan, Ersan Demiralp, Özgür E. Müstecaphoğlu, Phys. Rev. A 76, 013618 (2007)

    Article  ADS  Google Scholar 

  40. N.J.M. Horing, unpublished

    Google Scholar 

  41. P.M. Morse, H. Feschbach, Methods of Theoretical Physics, vol. 1. (McGraw-Hill, New York, 832, 1953)

    Google Scholar 

  42. F. Garcia-Moliner, F. Flores, Introduction to the Theory of Solid Surfaces. (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  43. F. Garcia-Moliner, V.R. Velasco, Theory of Single and Multiple Interfaces. (World Scientific, Singapore, 1992)

    Google Scholar 

  44. S.G. Davison, J.D. Levine, Solid State Physics, vol. 25, eds. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1970)

    Google Scholar 

  45. S.G. Davison, M. Steslicka, Basic Theory of Surface States (Clarendon Press, Oxford, 1992)

    Book  Google Scholar 

  46. J. Inglesfield, J. Phys. C; Solid State Phys. 4, L 14, (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. M. Horing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horing, N.J.M. (2016). Aspects of the Modeling of Low Dimensional Quantum Systems. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_2

Download citation

Publish with us

Policies and ethics