Skip to main content

Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9439)

Abstract

In the classical game of Cops and Robbers on graphs, the capture time is defined by the least number of moves needed to catch all robbers with the smallest amount of cops that suffice. While the case of one cop and one robber is well understood, it is an open question how long it takes for multiple cops to catch multiple robbers. We show that capturing \(\ell \in {\mathcal{O}}\left(n\right)\) robbers can take \(\Omega\left(\ell \cdot n\right)\) time, inducing a capture time of up to \(\Omega\left(n^2\right)\). For the case of one cop, our results are asymptotically optimal. Furthermore, we consider the case of a superlinear amount of robbers, where we show a capture time of \(\Omega \left(n^2 \cdot \log\left(\ell/n\right) \right)\).

Keywords

  • Cayley Graph
  • Graph Construction
  • Capture Time
  • Classical Game
  • Search Number

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25258-2_24
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-25258-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, M., Fromme, M.: A Game of Cops and Robbers. Discrete Applied Mathematics 8(1), 1–12 (1984)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Alspach, B.: Sweeping and Searching in Graphs: a Brief Survey. Matematiche 59, 5–37 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Berarducci, A., Intrigila, B.: On the Cop Number of a Graph. Advances in Applied Mathematics 14(4), 389–403 (1993)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Bonato, A., Chiniforooshan, E.: Pursuit and evasion from a distance: algorithms and bounds. In: Proceedings of the Sixth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 1–10. SIAM (2009)

    Google Scholar 

  5. Bonato, A., Golovach, P.A., Hahn, G., Kratochvíl, J.: The Capture Time of a Graph. Discrete Mathematics 309(18), 5588–5595 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Bonato, A., Gordinowicz, P., Kinnersley, B., Prałat, P.: The Capture Time of the Hypercube. Electr. J. Comb. 20(2), P24 (2013)

    Google Scholar 

  7. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Student Mathematical Library, vol. 61. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  8. Bonato, A., Yang, B.: Graph searching and related problems. In: Handbook of Combinatorial Optimization, pp. 1511–1558. Springer, New York (2013)

    CrossRef  Google Scholar 

  9. Breisch, R.: An Intuitive Approach to Speleotopology. Southwestern Cavers 6(5), 72–78 (1967)

    Google Scholar 

  10. Clarke, N.E., MacGillivray, G.: Characterizations of k-copwin Graphs. Discrete Mathematics 312(8), 1421–1425 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Deo, N., Nikoloski, Z.: The Game of Cops and Robbers on Graphs: a Model for Quarantining Cyber Attacks. Congressus Numerantium, 193–216 (2003)

    Google Scholar 

  12. Frankl, P.: Cops and Robbers in Graphs with Large Girth and Cayley Graphs. Discrete Appl. Math. 17(3), 301–305 (1987)

    MathSciNet  CrossRef  MATH  Google Scholar 

  13. Frieze, A.M., Krivelevich, M., Loh, P.-S.: Variations on Cops and Robbers. Journal of Graph Theory 69(4), 383–402 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Gavenciak, T.: Cop-win Graphs with Maximum Capture-time. Discrete Mathematics 310(10–11), 1557–1563 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Hahn, G.: Cops, Robbers and Graphs. Tatra Mt. Math. Publ. 36(163), 163–176 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Kinnersley, W.B.: Cops and Robbers is EXPTIME-complete. J. Comb. Theory, Ser. B 111, 201–220 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Kosowski, A., Li, B., Nisse, N., Suchan, K.: k-Chordal graphs: from cops and robber to compact routing via treewidth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 610–622. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  18. Lu, L., Peng, X.: On Meyniel’s Conjecture of the Cop Number. Journal of Graph Theory 71(2), 192–205 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Mehrabian, A.: The Capture Time of Grids. Discrete Mathematics 311(1), 102–105 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Moon, J.W.: On the Diameter of a Graph. Michigan Math. J. 12(3), 349–351 (1965)

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex Pursuit in a Graph. Discrete Mathematics 43(2-3), 235–239 (1983)

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) AII 1992. LNCS, vol. 642, pp. 426–441. Springer, Heidelberg (1992)

    Google Scholar 

  23. Parsons, T.D.: The search number of a connected graph. In: Proc. 9th Southeast. Conf. on Combinatorics, Graph Theory, and Computing (1978)

    Google Scholar 

  24. Prałat, P.: When Does a Random Graph Have a Constant Cop Number. Australasian Journal of Combinatorics 46, 285–296 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Quilliot, A.: Jeux et Pointes Fixes sur les Graphes. Ph.D. thesis, Universite de Paris VI (1978)

    Google Scholar 

  26. Scott, A., Sudakov, B.: A Bound for the Cops and Robbers Problem. SIAM J. Discrete Math. 25(3), 1438–1442 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Förster, KT., Nuridini, R., Uitto, J., Wattenhofer, R. (2015). Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond. In: Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science(), vol 9439. Springer, Cham. https://doi.org/10.1007/978-3-319-25258-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25258-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25257-5

  • Online ISBN: 978-3-319-25258-2

  • eBook Packages: Computer ScienceComputer Science (R0)