Abstract
In the classical game of Cops and Robbers on graphs, the capture time is defined by the least number of moves needed to catch all robbers with the smallest amount of cops that suffice. While the case of one cop and one robber is well understood, it is an open question how long it takes for multiple cops to catch multiple robbers. We show that capturing \(\ell \in {\mathcal{O}}\left(n\right)\) robbers can take \(\Omega\left(\ell \cdot n\right)\) time, inducing a capture time of up to \(\Omega\left(n^2\right)\). For the case of one cop, our results are asymptotically optimal. Furthermore, we consider the case of a superlinear amount of robbers, where we show a capture time of \(\Omega \left(n^2 \cdot \log\left(\ell/n\right) \right)\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aigner, M., Fromme, M.: A Game of Cops and Robbers. Discrete Applied Mathematics 8(1), 1–12 (1984)
Alspach, B.: Sweeping and Searching in Graphs: a Brief Survey. Matematiche 59, 5–37 (2006)
Berarducci, A., Intrigila, B.: On the Cop Number of a Graph. Advances in Applied Mathematics 14(4), 389–403 (1993)
Bonato, A., Chiniforooshan, E.: Pursuit and evasion from a distance: algorithms and bounds. In: Proceedings of the Sixth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 1–10. SIAM (2009)
Bonato, A., Golovach, P.A., Hahn, G., KratochvĂl, J.: The Capture Time of a Graph. Discrete Mathematics 309(18), 5588–5595 (2009)
Bonato, A., Gordinowicz, P., Kinnersley, B., Prałat, P.: The Capture Time of the Hypercube. Electr. J. Comb. 20(2), P24 (2013)
Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Student Mathematical Library, vol. 61. American Mathematical Society, Providence (2011)
Bonato, A., Yang, B.: Graph searching and related problems. In: Handbook of Combinatorial Optimization, pp. 1511–1558. Springer, New York (2013)
Breisch, R.: An Intuitive Approach to Speleotopology. Southwestern Cavers 6(5), 72–78 (1967)
Clarke, N.E., MacGillivray, G.: Characterizations of k-copwin Graphs. Discrete Mathematics 312(8), 1421–1425 (2012)
Deo, N., Nikoloski, Z.: The Game of Cops and Robbers on Graphs: a Model for Quarantining Cyber Attacks. Congressus Numerantium, 193–216 (2003)
Frankl, P.: Cops and Robbers in Graphs with Large Girth and Cayley Graphs. Discrete Appl. Math. 17(3), 301–305 (1987)
Frieze, A.M., Krivelevich, M., Loh, P.-S.: Variations on Cops and Robbers. Journal of Graph Theory 69(4), 383–402 (2012)
Gavenciak, T.: Cop-win Graphs with Maximum Capture-time. Discrete Mathematics 310(10–11), 1557–1563 (2010)
Hahn, G.: Cops, Robbers and Graphs. Tatra Mt. Math. Publ. 36(163), 163–176 (2007)
Kinnersley, W.B.: Cops and Robbers is EXPTIME-complete. J. Comb. Theory, Ser. B 111, 201–220 (2015)
Kosowski, A., Li, B., Nisse, N., Suchan, K.: k-Chordal graphs: from cops and robber to compact routing via treewidth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 610–622. Springer, Heidelberg (2012)
Lu, L., Peng, X.: On Meyniel’s Conjecture of the Cop Number. Journal of Graph Theory 71(2), 192–205 (2012)
Mehrabian, A.: The Capture Time of Grids. Discrete Mathematics 311(1), 102–105 (2011)
Moon, J.W.: On the Diameter of a Graph. Michigan Math. J. 12(3), 349–351 (1965)
Nowakowski, R.J., Winkler, P.: Vertex-to-vertex Pursuit in a Graph. Discrete Mathematics 43(2-3), 235–239 (1983)
Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) AII 1992. LNCS, vol. 642, pp. 426–441. Springer, Heidelberg (1992)
Parsons, T.D.: The search number of a connected graph. In: Proc. 9th Southeast. Conf. on Combinatorics, Graph Theory, and Computing (1978)
Prałat, P.: When Does a Random Graph Have a Constant Cop Number. Australasian Journal of Combinatorics 46, 285–296 (2010)
Quilliot, A.: Jeux et Pointes Fixes sur les Graphes. Ph.D. thesis, Universite de Paris VI (1978)
Scott, A., Sudakov, B.: A Bound for the Cops and Robbers Problem. SIAM J. Discrete Math. 25(3), 1438–1442 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Förster, KT., Nuridini, R., Uitto, J., Wattenhofer, R. (2015). Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond. In: Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science(), vol 9439. Springer, Cham. https://doi.org/10.1007/978-3-319-25258-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-25258-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25257-5
Online ISBN: 978-3-319-25258-2
eBook Packages: Computer ScienceComputer Science (R0)