Advertisement

Data Mining with Histograms – A Case Study

  • Jan Rauch
  • Milan Šimůnek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9384)

Abstract

Histograms are introduced as interesting patterns for data mining. An application of the procedure CF-Miner mining for various types of histograms is described. Possibilities of using domain knowledge in a process of mining interesting histograms are outlined.

References

  1. 1.
    Atzmueller, M.: Subgroup discovery. WIREs Data Min. Knowl. Discov. 5, 35–49 (2015)CrossRefGoogle Scholar
  2. 2.
    Dong, G., Bailey, J.: Contrast Data Mining: Concepts, Algorithms, and Applications. Chapman and Hall/CRC, Boca Raton (2012)Google Scholar
  3. 3.
    Hájek, P., Holeňa, M., Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76, 34–48 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Jaroszewicz, S., Scheffer, T., Simovici, D.A.: Scalable pattern mining with Bayesian networks as background knowledge. Data Min. Knowl. Discov. 18, 56–100 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lavrac, N., et al.: The utility of background knowledge in learning medical diagnostic rules. Appl. Artif. Intell. 7, 273–293 (1993)CrossRefGoogle Scholar
  6. 6.
    Mansingh, G., Osei-Bryson, K.-M., Reichgelt, H.: Using ontologies to facilitate post-processing of association rules by domain experts. Inf. Sci. 181, 419–434 (2011)CrossRefGoogle Scholar
  7. 7.
    Phillips, J., Buchanan, B.G.: Ontology guided knowledge discovery in databases. In: Proc. First International Conference on Knowledge Capture, pp. 123–130. ACM, Victoria, British Columbia, Canada (2001)Google Scholar
  8. 8.
    Rauch, J., Šimůnek, M.: Learning association rules from data through domain knowledge and automation. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 266–280. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Rauch, J., Šim\(\mathring{\text{ u }}\)nek M.: Knowledge Discovery in Databases, LISp-Miner and GUHA (in Czech) Economia, Praha (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Informatics and StatisticsUniversity of EconomicsPrague 3Czech Republic

Personalised recommendations