Skip to main content

The Expansion of Experiential Spaces Over History

  • Chapter
  • First Online:
Historical Epistemology of Space

Part of the book series: SpringerBriefs in History of Science and Technology ((BRIEFSHIST))

  • 386 Accesses

Abstract

Besides the reflection on representations of existing spatial knowledge, the expansion of spaces of experience is a motor for conceptual development, whether these are the geographical spaces known through political expansion, trade, and exploration, the cosmological spaces known through observation, or the microcosmic spaces known through engineering and experimentation. The chapter presents three examples for processes of concept formation and the generalization of spatial concepts that were promoted by such expansions of experiential spaces. The first example refers to the systematic accumulation of geographical knowledge, which laid the foundation for the introduction of a global system of terrestrial coordinates. This allowed landmarks to be related no longer just to other landmarks but also to a mathematically determined, abstract geographical space. The second example refers to the accumulation over centuries of astronomical and mechanical knowledge, which, by a process of reflective integration, brought about the Newtonian concept of a homogeneous, isotropic, absolute space independent of its matter content. The third example relates to the expansion of knowledge of microscopic space by institutionalized research on electric and magnetic forces, which brought about and stabilized the concept of the electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Malkin (2011).

  2. 2.

    Harley and Woodward (1987, 148–149).

  3. 3.

    See Strabo (1982–1995) for a modern edition with an English translation.

  4. 4.

    On the different arguments for the centrality of the earth found in Aristotle and Ptolemy, see Omodeo and Tupikova (forthcoming).

  5. 5.

    The hypothesis of a close relation between astronomical instruments and cosmological theory is discussed in Szabó and Maula (1982). That the knowledge about the dependency of the celestial appearances on geographical position does not necessarily lead to the hypothesis of a spherical earth is suggested by the Chinese case. The very same phenomena that Eratosthenes exploited in his estimation of the size of the spherical earth (see below)—the variation along the north-south direction of the gnomon shadow length at noon—were used in China to determine the height of the heavens above a flat earth. (I am grateful to Irina Tupikova for pointing this out to me.) See Cullen (1976, 122–127).

  6. 6.

    Harley and Woodward (1987, 130–176), Dilke (1987).

  7. 7.

    See Harley and Woodward (1987, 138–139).

  8. 8.

    Harley and Woodward (1987, 151).

  9. 9.

    Aristotle, Meteorologica II, v, 362a33–363a20 (Aristotle 1987, 178–185); see also Harley and Woodward (1987, 145).

  10. 10.

    See Harley and Woodward (1987, 166).

  11. 11.

    Stückelberger and Graßhoff (2006–2009, 10–11).

  12. 12.

    On Ptolemy’s sources, see Stückelberger and Graßhoff (2006–2009, 16–20).

  13. 13.

    A famous example of such a ‘topological’ map is the Roman Peutinger Map from around 300 CE, which represents the oikoumene in a highly distorted way; see, e.g., Talbert (2007).

  14. 14.

    See Zilsel (2000b), in particular Chap. 2, The Sociological Roots of Science, which was first published in 1942. For a broader investigation of the societal causes of the emergence and persistence of modern science, see Lefèvre (1978).

  15. 15.

    See Mach (1989, 1–3) .

  16. 16.

    The authorship of the Mechanical Problems is disputed, which is why its author is usually referred to as Pseudo-Aristotle . There is a contemporary, independent emergence of theoretical reflections on mechanical arrangements and phenomena in China , documented in the Mohist Canon , which apparently had virtually no influence on the later course of Chinese intellectual history; see Renn and Schemmel (2006).

  17. 17.

    Abattouy et al. (2001, 4–5 and 9–10).

  18. 18.

    See, for instance, Maier (1952) and Clagett (1959). On the use of the diagrammatic representation of motion in early modern science, see Schemmel (2014).

  19. 19.

    On Galileo, Descartes, and Beeckmann, see Damerow et al. (2004); on Harriot, see Schemmel (2006) and Schemmel (2008).

  20. 20.

    See Hunger and Pingree (1999).

  21. 21.

    See Saliba (1994).

  22. 22.

    See, e.g., Johnson (1937, 111–112).

  23. 23.

    Pierre Duhem is correct, of course, when he points out that Newton could not find his laws by generalizing Kepler’s laws, that he could not “extract [them] from experiment” (Duhem 1962, 191) by means of induction. Duhem argues that Newton’s set of laws and Kepler’s set of laws actually contradict each other and that therefore the one cannot be derived from the other (Duhem 1962, 190–195). It is true that the relation between Newton’s mechanics and preclassical mechanics is not one of formal deductivity. The form of reasoning that connects the mutually incompatible but genetically related conceptual systems is non-monotonic and involves content-dependent cognitive structures such as mental models (see below).

  24. 24.

    A prominent example for the gradual understanding of the conceptual implications of a theory’s physico-mathematical formalism, which is itself evolving, is provided by the history of general relativity; see Renn (2007, vols. 1 and 2); see also the next chapter.

  25. 25.

    The definition of vis insita is Definition 3 in the Principia, see Newton (1999, 404), in which it is translated as ‘inherent force’ (another translation is ‘innate force’, see Newton 1729, 2). Newton’s use of the term force in this context is discussed by Bernard Cohen in Newton (1999, 96–101).

  26. 26.

    Three-dimensionality and Euclidicity are not particular to Newton’s concept of space, of course; both are accepted properties in ancient, medieval, and early modern theories of space. In the Aristotelian cosmos, for instance, natural motions follow the elements of Euclidean geometrical figures, straight lines and circles. However, while in the Aristotelian case the application of these elements is restricted due to the finiteness of the cosmos, such a restriction does not apply to infinite Newtonian space (see below).

  27. 27.

    Newton (1978, 133). This is A.R. and M.B. Hall’s translation of Newton’s unpublished manuscript De gravitatione et aequipondio fluidorum, the Latin original reads: “Ad eundem modum intra aquam claram etsei nullas videmus materiales figuras, tamen insunt plurimae quas aliquis tantum color varijs ejus partibus inditus multimodo faceret apparere” (Newton 1978, 100).

  28. 28.

    Earman (1989, 11).

  29. 29.

    Newton (1978, 133).

  30. 30.

    Newton (1978, 133).

  31. 31.

    Newton (1978, 134).

  32. 32.

    Newton (1978, 104, 138). In fact, the assumption of an infinitely extended universe with a homogeneous matter distribution, which appears to be the most natural cosmological extension of Newtonian physics, causes problems for classical theory: the gravitational force on a test-body becomes indeterminate everywhere. Newton himself recognized the problem (and erroneously thought that he could solve it). The problem was rediscovered at the end of the nineteenth century by the astronomer Hugo von Seeliger (1895, 1896). The difficulties for Newtonian theory arising from infinitely extended material universes and the history of approaches to the problem, including Newton’s, are discussed in Norton (1999).

  33. 33.

    Newton (1978, 137).

  34. 34.

    Newton (1978, 137).

  35. 35.

    Descartes, Principia, II, 37–39 (Descartes 1984, 59–61).

  36. 36.

    Descartes’ theory of motion is thoroughly criticized by Newton in his De gravitatione ... (Newton 1978, 91–98, 123–131); references to Descartes are less explicit but still clearly discernible in Newton’s Principia, see below.

  37. 37.

    Newton (1999, 412–413).

  38. 38.

    According to Jammer (1954, 114), in Newton’s view, the mechanical arguments for the existence of space are subordinate to the theological-metaphysical ones in the sense that their major function is to provide evidence for the relation between absolute space and God . Jammer (1954, 108–114) traces the theological-metaphysical influence on Newton’s concept of space back to Jewish cabalistic and Neoplatonic thought, mediated by Henry More and Newton’s teacher Isaac Barrow.

  39. 39.

    “Je ne veux pas entrer dans la discussion des objections, qu’on fait contre la réalité de l’espace & du lieu; car ayant démontré, que cette réalité ne peut plus être revoquée en doute, il s’ensuit nécessairement, que toute ces objections doivent être peu solides; quand même nous ne serions pas en état d’y répondre.” (Euler 1748, 330, English translation M.S. A German translation is found in Euler 1763, 1–18.) Euler then goes on to state that if one thinks, based on the principle of the identity of indiscernibles, that it is absurd that the different places or parts of space are mutually indistinguishable (as Leibniz did in his correspondence with Clarke), maybe the principle does not hold in general, pertaining to bodies and spirits but not to parts of space.

  40. 40.

    Neumann (1870). Incidentally, this is the text in which Neumann, in a sort of resublimitation of the sublimate landmarks of Newtonian absolute space, introduces the notion of a “Body Alpha.”

  41. 41.

    Lange (1886, 133–141) .

  42. 42.

    Barbour (1989, 659).

  43. 43.

    On the practical background of Gilbert’s work, see Zilsel (2000a).

  44. 44.

    Chung (1997, 42).

  45. 45.

    Faraday (1965, Vol. II, 286).

  46. 46.

    Gilbert gives an account of ancient and later opinions on electricity and magnetism in his De magnete, Book II, Chap. 3, before stating his own view (Gilbert 1958, 60–64).

  47. 47.

    In the case of gravitation, the search for a material explanation continued through post-Newtonian times and well into the twentieth century; see, e.g., van Lunteren (1991).

  48. 48.

    On Faraday’s ideas of matter as a ‘plenum of powers’ being influenced by Priestley’s view, and the conflation of Priestley’s theory of matter with Roger Joseph Boscovich’s, see Harman (1982, 77).

  49. 49.

    Darrigol (2000, 1), Fox (1974).

  50. 50.

    For a comprehensive account on the development of electrodynamics in the course of the nineteenth century, see Darrigol (2000). For a detailed discussion of Ampère’s and Faraday’s experiments and their relation to theory, see Steinle (2005).

  51. 51.

    On Ørsted and Ampère, see Harman (1982, 30–32).

  52. 52.

    Harman (1982, 73–78).

  53. 53.

    Harman (1982, 82–84).

  54. 54.

    Maxwell (1890, 527–528) .

  55. 55.

    Harman (1982, 104).

  56. 56.

    On Maxwell’s theories of the field, see Harman (1982, 84–98).

  57. 57.

    Harman (1982, 101–102).

  58. 58.

    On the distinction between mechanical models and dynamical systems, see Buchwald (1988, 20–23).

  59. 59.

    For a detailed account of the history of conceptions of the ether’s state of motion in the light of the experiential knowledge of the time, see Janssen and Stachel (2004).

  60. 60.

    This is how Einstein put it in retrospect; see Einstein (1922, 11).

  61. 61.

    Einstein (1922, 11).

  62. 62.

    “Der völlig starre Äther trat ferner so sehr aus dem Kreis der beeinflußbaren und damit näher erkennbaren Objekte heraus, daß auch die Relativitätstheorie möglich wurde, bei welcher der Begriff des Äthers nur als ein durch neue Erfahrungen vertiefter Raum-Zeitbegriff erscheint.” (Schwarzschild 1913, 598, English translation M.S.)

  63. 63.

    ‘Knowledge acquisition’ or ‘production’, depending on whether one wishes to stress the empirical or the constructive aspect of knowledge growth.

  64. 64.

    Kant (1996, 78).

  65. 65.

    On Kant’s empirical concept of matter, see Friedman (2001).

  66. 66.

    Compare Kant’s statement above to the following contradicting one, made by David Hume in his Treatise concerning human nature: “the ideas of space and time are [...] no separate or distinct ideas, but merely those of the manner or order, in which objects exist”: “[...] ’tis impossible to conceive either a vacuum and extension without matter, or a time, when there was no succession or change in any real existence” (Hume 2007, 31). Hume here clearly advocates a position-quality concept of space.

References

  • Abattouy, M., Renn, J., & Weinig, P. (2001). Transmission as transformation: The translation movements in the medieval East and West in a comparative perspective. Science in Context, 14, 1–12.

    Google Scholar 

  • Aristotle, (1987). Meteorologica. Aristotle in twenty-three volumes. Cambridge, MA: Loeb Classical Library, Harvard University Press.

    Google Scholar 

  • Barbour, J. B. (1989). Absolute or relative motion? Vol. 1: The discovery of dynamics. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Buchwald, J. Z. (1988). From Maxwell to microphysics: Aspects of electromagnetic theory in the last quarter of the nineteenth century. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Chung, Y. (1997). Die Entwicklung des Kraftbegriffes im 18. und 19. Jahrhundert und die Entstehung des Feldbegriffes als einer Entität zwischen Raum und Materie. Preprint 68. Berlin: Max Planck Institute for the History of Science.

    Google Scholar 

  • Clagett, M. (1959). The science of mechanics in the Middle Ages. Madison, WI: University of Wisconsin Press.

    Google Scholar 

  • Cullen, C. (1976). A Chinese Eratosthenes of the flat earth: A study of a fragment of cosmology in Huai Nan Tzu. Bulletin of the School of Oriental and African Studies, University of London, 39(1), 106–127.

    Google Scholar 

  • Damerow, P., Freudenthal, G., MacLaughlin, P., & Renn, J. (2004). Exploring the Limits of Preclassical Mechanics: A study of conceptual development in early modern science; free fall and compounded motion in the work of Descartes, Galileo, and Beeckman (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Darrigol, O. (2000). Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.

    Google Scholar 

  • Descartes, R. (1984). Principles of philosophy. Dordrecht: Reidel.

    Google Scholar 

  • Dilke, O. A. W. (1987). The culmination of Greek cartography in Ptolemy. In J. B. Harley & D. Woodward (Eds.), Cartography in prehistoric, ancient, and medieval Europe and the Mediterranean (pp. 177–200). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Duhem, P. M. M. (1962). The aim and structure of physical theory. New York: Atheneum.

    Google Scholar 

  • Earman, J. (1989). World enough and space-time: Absolute versus relational theories of space and time. Cambridge, MA: MIT Press.

    Google Scholar 

  • Einstein, A. (1922). Ether and the theory of relativity. Sidelights on relativity (pp. 3–24). London: Methuen.

    Google Scholar 

  • Euler, L. (1748). Reflexions sur l’espace et le tems. Memoires de l’Academie des sciences de Berlin, 4, 324–333.

    Google Scholar 

  • Euler, L. (1763). Vernuenftige Gedanken von dem Raume, dem Orth, der Dauer und der Zeit. Theils aus dem Französischen des Herrn Professor Eulers uebersezt, theils aus verschiednen ungedruckten Briefen dieses berühmten Mannes mitgetheilt; nebst einigen Anmerkungen und einem Versuche einer unparteyischen Geschichte der Streitigkeiten über diese Dinge. Schwan, Quedlinburg.

    Google Scholar 

  • Faraday, M. (1965). Experimental researches in electricity. New York: Dover.

    Google Scholar 

  • Fox, R. (1974). The rise and fall of Laplacian physics. Historical Studies in the Physical Sciences, 4, 89–136.

    Google Scholar 

  • Friedman, M. (2001). Matter and motion in the ‘Metaphysical Foundations’ and the first ‘Critique’: The empirical concept of matter and the categories. In E. Watkins (Ed.), Kant and the sciences. Oxford: Oxford University Press.

    Google Scholar 

  • Gilbert, W. (1958). On the magnet. New York: Basic Books.

    Google Scholar 

  • Harman, P. M. (1982). Energy, force, and matter: The conceptual development of nineteenth-century physics. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Harley, J. B., & Woodward, D. (Eds.). (1987). The history of cartography, Vol. 1: Cartography in prehistoric, ancient, and medieval Europe and the Mediterranean. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Hume, D. (2007). A treatise of human nature: A critical edition. Oxford: Clarendon Press.

    Google Scholar 

  • Hunger, H., & Pingree, D. (1999). Astral sciences in Mesopotamia. Leiden: Brill.

    Google Scholar 

  • Jammer, M. (1954). Concepts of space: The history of theories of space in physics. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Janssen, M., Stachel, J. (2004). The optics and electrodynamics of moving bodies. Preprint 265. Berlin: Max Planck Institute for the History of Science.

    Google Scholar 

  • Johnson, F. R. (1937). Astronomical thought in Renaissance England: A study of the English scientific writings from 1500 to 1645. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Kant, I. (1996). Critique of pure reason: Unified edition; with all variants from the 1781 and 1787 editions. Indianapolis, IN: Hackett.

    Google Scholar 

  • Lange, L. (1886). Die geschichtliche Entwickelung des Bewegungsbegriffes und ihr voraussichtliches Endergebnis: Ein Beitrag zur historischen Kritik der mechanischen Principien. Leipzig: Engelmann.

    Google Scholar 

  • Lefèvre, W. (1978). Naturtheorie und Produktionsweise. Probleme einer materialistischen Wissenschaftsgeschichtsschreibung - Eine Studie zur Genese der neuzeitlichen Naturwissenschaft. Darmstadt/Neuwied: Hermann Luchterhand.

    Google Scholar 

  • Mach, E. (1989). The science of mechanics: A critical and historical account of its development. Lasalle, IL: Open Court Publ.

    Google Scholar 

  • Maier, A. (1952). An der Grenze von Scholastik und Naturwissenschaft: Die Struktur der materiellen Substanz, das Problem der Gravitation, die Mathematik der Formlatituden, No. 3 in Studien zur Naturphilosophie der Spätscholastik. Rome: Edizioni di Storia e Letteratura.

    Google Scholar 

  • Malkin, I. (2011). A small Greek world: Networks in the ancient Mediterranean. New York: Oxford University Press.

    Google Scholar 

  • Maxwell, J. C. (1890). A dynamical theory of the electromagnetic field. In W. D. Niven (Ed.), Scientific papers (Vol. 1, pp. 526–597). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Neumann, C. (1870). Ueber die Principien der Galilei-Newton’schen Theorie: Akademische Antrittsvorlesung, gehalten in der Aula der Universität Leipzig am 3. November 1869. Teubner, Leipzig.

    Google Scholar 

  • Newton, I. (1729). The mathematical principles of natural philosophy. London: Printed for Benjamin Motte.

    Google Scholar 

  • Newton, I. (1978). Unpublished scientific papers of Isaac Newton: A selection from the Portsmouth collection in the University Library. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Newton, I. (1999). The ‘Principia’: Mathematical principles of natural philosophy. Berkeley, CA: University of California Press.

    Google Scholar 

  • Norton, J. D. (1999). The cosmological woes of Newtonian gravitation theory. In H. Goenner, J. Renn, J. Ritter, & T. Sauer (Eds.), The expanding worlds of general relativity (pp. 271–323). Boston: Birkhäuser.

    Google Scholar 

  • Omodeo, P. D., & Tupikova, I. (forthcoming). Cosmology and epistemology: A comparison between Aristotle’s and Ptolemy’s approaches to geocentrism. In M. Schemmel (Ed.), Spatial thinking and external representation: Towards an historical epistemology of space. Berlin: Edition Open Access.

    Google Scholar 

  • Renn, J. (Ed.). (2007). The genesis of general relativity. Boston Studies in the Philosophy of Science (Vol. 250). Dordrecht: Springer.

    Google Scholar 

  • Renn, J., & Schemmel, M. (2006). Mechanics in the Mohist Canon and its European counterparts. In H. U. Vogel, C. Moll-Murata, & G. Xuan (Eds.), Studies on ancient Chinese scientific and technical texts: Proceedings of the 3rd ISACBRST (pp. 24–31). Zhengzhou: Daxiang chubanshe.

    Google Scholar 

  • Saliba, G. (1994). A history of Arabic astronomy: Planetary theories during the golden age of Islam. New York: New York University Press.

    Google Scholar 

  • Schemmel, M. (2006). The English Galileo: Thomas Harriot and the force of shared knowledge in early modern mechanics. Physics in Perspective, 8, 360–380.

    Google Scholar 

  • Schemmel, M. (2008). The English Galileo: Thomas Harriot’s work on motion as an example of preclassical mechanics. Boston Studies in the Philosophy of Science (Vol. 268). Dordrecht: Springer.

    Google Scholar 

  • Schemmel, M. (2014). Medieval representations of change and their early modern application. Foundations of Science, 19, 11–34.

    Article  Google Scholar 

  • Schwarzschild. K. (1913). Antrittsrede des Hrn. Schwarzschild. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 596–600.

    Google Scholar 

  • Seeliger, H. von (1895). Über das Newton’sche Gravitationsgesetz. Astronomische Nachrichten, 137, 129–136.

    Google Scholar 

  • Seeliger, H. von (1896). Über das Newton’sche Gravitationsgesetz. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalsche Klasse, 26, 373–400.

    Google Scholar 

  • Steinle, F. (2005). Explorative Experimente: Ampère, Faraday und die Ursprünge der Elektrodynamik. Steiner, Stuttgart.

    Google Scholar 

  • Strabo. (1982–1995). The geography of Strabo, reprint edition. Loeb Classical Library. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Stückelberger, A., & Graßhoff, G. (Eds.). (2006–2009). Ptolemaios. Handbuch der Geographie. Basel: Schwabe.

    Google Scholar 

  • Szabó, A., & Maula, E. (1982). Enklima. Untersuchungen zur Frühgeschichte der antiken griechischen Astronomie, Geographie und der Sehnentafeln. Athen: Akademie Athen.

    Google Scholar 

  • Talbert, R. (2007). Peutinger’s Roman map: The physical landscape framework. In M. Rathmann (Ed.), Wahrnehmung und Erfassung geographischer Räume in der Antike (pp. 221–230). Mainz: Philipp von Zabern.

    Google Scholar 

  • van Lunteren, F. H. (1991). Framing hypotheses: Conceptions of gravity in the 18th and 19th centuries. Ph.D. thesis, Rijksuniversiteit te Utrecht, Utrecht.

    Google Scholar 

  • Zilsel, E. (2000a). The origins of William Gilbert’s scientific method. In D. Raven, W. Krohn, & R. S. Cohen (Eds.), The social origins of modern science (pp. 71–95). Dordrecht: Kluwer.

    Google Scholar 

  • Zilsel, E. (2000b). The social origins of modern science. Boston Studies in the Philosophy of Science (Vol. 200). Dordrecht: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schemmel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Schemmel, M. (2016). The Expansion of Experiential Spaces Over History. In: Historical Epistemology of Space. SpringerBriefs in History of Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25241-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25241-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25239-1

  • Online ISBN: 978-3-319-25241-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics