Skip to main content

A Comparison Study for Spectral, Ensemble and Spectral-Mean Shift Clustering Approaches for Interval-Valued Symbolic Data

  • Conference paper
  • First Online:
Analysis of Large and Complex Data
  • 2211 Accesses

Abstract

Interval-valued data arise in practical situations such as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. This paper presents a comparison study for clustering efficiency (according to adjusted Rand index) for spectral, ensemble, and spectral-mean shifted clustering methods for symbolic data. Evaluation studies with application of artificial data with known cluster structure (obtained from mlbench and clusterSim packages of R) show the usefulness and stable results of the ensemble clustering compared to spectral and spectral-mean shift method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    MathSciNet  MATH  Google Scholar 

  • Bock, H.-H., & Diday, E. (Eds.) (2000). Analysis of symbolic data. Explanatory methods for extracting statistical information from complex data. Berlin/Heidelberg: Springer.

    MATH  Google Scholar 

  • Billard, L., & Diday, E. (2006). Symbolic data analysis: Conceptual statistics and data mining. Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8), 790–799.

    Article  Google Scholar 

  • Comaniciu, D., Ramesh, V., & Meer, P. (2001). The variable bandwidth mean shift and data-driven scale selection. In International Conference on Computer Vision (Vol. I, pp. 438–445).

    Google Scholar 

  • Comaniciu, D., Ramesh, V., & Meer, P. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564–577.

    Article  Google Scholar 

  • de Carvalho, F. A. T., Lechevallier, Y., & de Melo, F. M. (2012). Partitioning hard clustering algorithms based on multiple dissimilarity matrices. Pattern Recognition, 45(1), 447–464.

    Article  MATH  Google Scholar 

  • Dudoit, S., & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering procedure. Bioinformatics, 19(9), 1090–1099.

    Article  Google Scholar 

  • Fred, A. L. N., & Jain, A. K. (2005). Combining multiple clustering using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 835–850.

    Article  Google Scholar 

  • Fukunaga, K., & Hostetler, L. (1975) The estimation of the gradient of a destiny function, with applications in pattern recognition. IEEE Transactions on Information Theory, 21(1), 32–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghaemi, R., Sulaiman, N., Ibrahim, H., & Mustapha, N. (2009). A survey: Clustering ensemble techniques. In Proceedings of World Academy of Science, Engineering and Technology (Vol. 38, pp. 636–645).

    Google Scholar 

  • Hornik, K. (2005). A CLUE for CLUster ensembles. Journal of Statistical Software, 14, 65–72.

    Article  MathSciNet  Google Scholar 

  • Karatzoglou, A. (2006). Kernel Methods. Software, Algorithms and Applications. Doctoral thesis, Vienna University of Technology.

    Google Scholar 

  • Leisch, F. (1999). Bagged clustering. Adaptive Information Systems and Modeling in Economics and Management Science, Working Papers, SFB, 51.

    Google Scholar 

  • Milligan, G. W, & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 2, 159–179.

    Article  Google Scholar 

  • Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In T. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 849–856). Cambridge: MIT Press.

    Google Scholar 

  • Pełka, M. (2012). Ensemble approach for clustering of interval-valued symbolic data. Statistics in Transition, 13(2), 335–342.

    Google Scholar 

  • Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3), 21–45.

    Article  Google Scholar 

  • Polikar, R. (2007). Bootstrap inspired techniques in computional intelligence: Ensemble of classifiers, incremental learning, data fusion and missing features. IEEE Signal Processing Magazine, 24(4), 59–72.

    Article  Google Scholar 

  • Qiu, W., & Joe, H. (2006). Generation of random clusters with specified degree of separation. Journal of Classification, 23, 315–334.

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Stehl, A., & Gosh, J. (2002). Cluster ensembles – A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–618.

    MathSciNet  Google Scholar 

  • von Luxburg, U. (2006). A tutorial on spectral clustering. Max Planck Institute for Biological Cybernetics, Technical Report TR-149.

    Google Scholar 

  • Walesiak, M., & Dudek, A. (2014). The clusterSim package, http://www.R-project.org

    Google Scholar 

  • Zhi-Hua, Z. (2012). Ensemble methods. Foundations and algorithms. Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Pełka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pełka, M. (2016). A Comparison Study for Spectral, Ensemble and Spectral-Mean Shift Clustering Approaches for Interval-Valued Symbolic Data. In: Wilhelm, A., Kestler, H. (eds) Analysis of Large and Complex Data. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-25226-1_12

Download citation

Publish with us

Policies and ethics