Skip to main content

Determination of Solid Surface Tension by Contact Angle

  • Chapter
  • First Online:

Abstract

In this chapter, approaches to determine solid surface tension by contact angle are briefly reviewed and assessed. These approaches include the Zisman method, various versions of the surface tension component methods, and the equation of state methods. The Zisman method is an empirical approach based on the relationship between the cosine of the contact angle and the surface tensions of the test liquids. The approach allows the determination of the critical surface tension of the solid. However, it is limited to low surface energy surfaces as data points from high surface tension liquids deviate from linearity due to polar and H-bonding interactions. The surface tension component approach is pioneered by Fowkes who assumed that (1) surface tension can be partitioned into individual independent components and (2) the work of adhesion can be expressed as the geometric means of the surface tension components. The original Fowkes method only considered dispersion interaction, and the methodology has been extended to include polar and H-bonding interactions in the extended Fowkes method or electron donor and acceptor interactions in the vOCG method. The equation of state assumes that the interfacial liquid–solid surface tension depends on the surface tension of the liquid and solid only. The interface surface tension was obtained by curve fitting with contact angle data and adjustable parameters. While the equation of state approach has been improved and three different versions have been developed, the basic thermodynamic assumption and the methodology were seriously challenged by many researchers in the field. It is important to note that both surface tension component methods and equation of state methods are semiempirical and that there are many assumptions in each methodology. Both approaches inherit a reversible work-of-adhesion assumption from Dupre. Specifically, for two immiscible liquids, the free energy change at the interface is equated to the interfacial tension of the newly formed interface subtracted by the surface tensions of the precursor liquids. The validity of this assumption is always questionable when one of the components is solid as the surface molecules or segments in solid have no mobility during any interfacial interaction. In view of this questionable assumption and the semiempirical nature of the contact angle approach, we propose a simpler and more direct approach to move forward. Since the motivation of determining surface tension is to be able to predict surface wettability and adhesion, we suggest measuring the advancing and receding angle of the solid surface instead. They have recently been shown to correlate to wettability and adhesion, respectively, by force measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B Condens Matter 69:165410

    Article  Google Scholar 

  2. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  3. Dupre A (1869) Theorie Mechanique de la Chaleur. Gauthier-Villars, Paris, p 369

    Google Scholar 

  4. Schrader ME (1995) Young-dupre revisited. Langmuir 11:3585–3589

    Article  Google Scholar 

  5. Hui CY, Jagota A (2013) Surface tension, surface energy, and chemical potential due to their difference. Langmuir 29:11310–11316

    Article  Google Scholar 

  6. Gray VR (1965) Surface aspects of wetting and adhesion. Chem Ind 23:969–977

    Google Scholar 

  7. Johnson RE (1959) Conflicts between Gibbsian thermodynamics and recent treatments of interfacial energies in solid–liquid-vapor systems. J Phys Chem 63:1655–1658

    Article  Google Scholar 

  8. Fox HW, Zisman WA (1950) The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci 5:514–531

    Article  Google Scholar 

  9. Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid constitution. In: Fowkes F (ed) Contact angle, wettability, and adhesion, advances in chemistry. American Chemical Society, Washington, DC, pp 1–51

    Chapter  Google Scholar 

  10. Ellison AH, Fox HW, Zisman AW (1953) Wetting of fluorinated solids by H-bonding liquids. J Phys Chem 57:622–627

    Article  Google Scholar 

  11. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on -CF3 alignment. Langmuir 15:4321–4323

    Article  Google Scholar 

  12. Shafrin EG, Zisman WA (1960) Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayer. J Phys Chem 64:519–524

    Article  Google Scholar 

  13. Chhatre SS, Guardado JO, Moore BM, Haddad TS, Mabry JM, McKinley GH, Cohen RE (2010) Fluoroalkylated silicon-containing surfaces—estimation of solid-surface energy. ACS Appl Mater Interfaces 2:3544–3554

    Article  Google Scholar 

  14. Fowkes FM (1962) Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surface. J Phys Chem 66:382

    Article  Google Scholar 

  15. Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52

    Article  Google Scholar 

  16. Fowkes FM (1972) Donor-acceptor interactions at interfaces. J Adhes 4:155–159

    Article  Google Scholar 

  17. Berthelot D (1898) Sur le mélange des gaz. C R Hebd Seances Acad Sci 126:1857–1858

    Google Scholar 

  18. Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 6:1269–1302

    Article  Google Scholar 

  19. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  Google Scholar 

  20. Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe und Lack 77:997–1005

    Google Scholar 

  21. Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81

    Article  Google Scholar 

  22. Janczuk B, Bialopiotrowicz T (1989) Surface free-energy components of liquids and low energy solids and contact angles. J Colloid Interface Sci 127:189–204

    Article  Google Scholar 

  23. Kitazaki Y, Hata TJ (1972) Surface-chemical criteria for optimum adhesion. J Adhes 4:123–132

    Article  Google Scholar 

  24. Van Oss CJ, Good RJ, Chaudhury MK (1986) The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interface Sci 111:378–390

    Article  Google Scholar 

  25. Van Oss CJ, Ju L, Chaudhury MK, Good RJ (1988) Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J Colloid Interface Sci 128:313–319

    Google Scholar 

  26. van Oss CJ (2006) Interfacial forces in aqueous media. Taylor & Francis, New York

    Google Scholar 

  27. Kollman P (1977) A general analysis of noncovalent intermolecular interactions. J Am Chem Soc 99:4875–4894

    Article  Google Scholar 

  28. Hobza P, Zahradnik R (1980) Weak intermolecular interactions in chemistry and biology. Elsevier, New York

    Google Scholar 

  29. Wu S (1971) Calculation of interfacial tension in polymer system. J Polym Sci C 34:19–30

    Article  Google Scholar 

  30. Wu S (1973) Polar and nonpolar interactions in adhesion. J Adhes 5:39–55

    Article  Google Scholar 

  31. Schultz J, Tsutsumi K, Donnet JB (1977) Surface properties of high-energy solids I. Determination of the dispersive component of the surface free energy of mica and its energy of adhesion to water and n-alkanes. J Colloid Interface Sci 59:272–277

    Article  Google Scholar 

  32. Schultz J, Tsutsumi K, Donnet JB (1977) Surface properties of high-energy solids determination of the nondispersive component of the surface free energy of mica and its energy of adhesion to polar liquids. J Colloid Interface Sci 59:278–282

    Article  Google Scholar 

  33. Sell PJ, Neumann AW (1966) The surface tension of solids. Angew Chem Int Ed 5:299–307

    Article  Google Scholar 

  34. Neumann AW, Good RJ, Hope CJ, Sejpal M (1974) An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J Colloid Interface Sci 49:291–304

    Article  Google Scholar 

  35. Li D, Neumann AW (1990) A reformulation of the equation of state for interfacial tensions. J Colloid Interface Sci 137:304–307

    Article  Google Scholar 

  36. Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81:167–249

    Article  Google Scholar 

  37. Kwok DY, Neumann AW (2000) Contact angle interpretation in terms of solid surface tension. Colloids Surf A Physicochem Eng Asp 161:31–48

    Article  Google Scholar 

  38. Girifalco LA, Good RJ (1957) A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem 61:904–909

    Article  Google Scholar 

  39. Van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4:884–891

    Article  Google Scholar 

  40. Fowkes FM, Riddle FL, Pastore WE, Weber AA (1990) Interfacial interactions between self-associated polar liquids and squalane used to test equations for solid–liquid interfacial interactions. Colloids Surf 43:367–387

    Article  Google Scholar 

  41. Good RJ, Elbing E (1971) Generalization of theory for estimation of interfacial energies. Chem Phys Interfaces 2:72–96

    Google Scholar 

  42. Morrison I (1991) Does the phase rule for capillary systems really justify an equation of state for interfacial tensions? Langmuir 7:1833–1836

    Article  Google Scholar 

  43. Zenkiewicz M (2007) Comparative study on the surface free energy of a solid calculated by different methods. Polym Test 26:14–19

    Article  Google Scholar 

  44. Della Volpe C, Maniglio D, Brugnara M, Siboni S, Morra M (2004) The solid surface free energy calculation I. In defense of the multicomponent approach. J Colloid Interface Sci 271:434–453

    Article  Google Scholar 

  45. Siboni S, Della Volpe C, Maniglio D, Brugnara M (2004) The solid surface free energy calculation II. The limits of the Zisman and of the “equation-of-state” approaches. J Colloid Interface Sci 271:454–472

    Article  Google Scholar 

  46. Cwikel D, Zhao Q, Liu C, Su X, Marmur A (2010) Comparing contact angle measurements and surface tension assessments of solid surfaces. Langmuir 26:15289–15294

    Article  Google Scholar 

  47. Della Volpe C, Maniglio D, Morra M, Siboni S (2002) The determination of a “stable equilibrium” contact angle on heterogeneous and rough surfaces. Colloids Surf A Physicochem Eng Asp 206:47–67

    Article  Google Scholar 

  48. Samuel B, Zhao H, Law KY (2011) Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces. J Phys Chem C 115:14852–14861

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Law, KY., Zhao, H. (2016). Determination of Solid Surface Tension by Contact Angle. In: Surface Wetting. Springer, Cham. https://doi.org/10.1007/978-3-319-25214-8_7

Download citation

Publish with us

Policies and ethics