Advertisement

Cooperative Transportation Using Pheromone Agents

  • Ryo Takahashi
  • Munehiro TakimotoEmail author
  • Yasushi Kambayashi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8946)

Abstract

This paper presents an algorithm for cooperatively transporting objects by multiple robots without any initial knowledge. The robots are connected by communication networks, and the controlling algorithm is based on the pheromone communication of social insects such as ants. Unlike traditional pheromone based cooperative transportation, we have implemented the pheromone as mobile software agents that control the mobile robots corresponding to the ants. The pheromone agent has the vector value pointing to its birth location inside, which is used to guide a robot to the birth location. Since the pheromone agent can diffuse with migrations between robots as the same manner as physical pheromone, it can attract other robots scattering in a work field to the birth location. Once the robot finds an object, it briefly pushes the object, measuring the degree of the inclination of the object. The robot generates a pheromone agent with the vector value to pushing point suitable for suppressing the inclination of the object. The process of the pushes and generations of pheromone agents enables the efficient transportation of the object. We have implemented a simulator that follows our algorithm, and conducted experiments to demonstrate the feasibility of our approach.

Keywords

Mobile agent Multiple robots Ant colony optimization Swarm intelligence 

References

  1. 1.
    Abe, T., Takimoto, M., Kambayashi, Y.: Searching targets using mobile agents in a large scale multi-robot environment. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS, vol. 6682, pp. 211–220. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Binder, W., Hulaas, J.G., Villazon, A.: Portable resource control in the J-SEAL2 mobile agent system. In: Proceedings of the Fifth International Conference on Autonomous Agents, AGENTS 2001, pp. 222–223. ACM (2001)Google Scholar
  3. 3.
    Deneubourg, J., Goss, S., Franks, N.R., Sendova-Franks, A.B., Detrain, C., Chreien, L.: The dynamics of collective sorting: robot-like ant and ant-like robot. In: Proceedings of the First Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 356–363. MIT Press (1991)Google Scholar
  4. 4.
    Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization-artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman. IEEE Trans. Evol. Comput. 1(1), 53–66 (1996)CrossRefGoogle Scholar
  6. 6.
    Fujisawa, R., Imamura, H., Matsuno, F.: Cooperative transportation by swarm robots using pheromone communication. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 83, pp. 559–570. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Gerkey, B.P., Mataric, M.J.: Pusher-watcher: An approach to fault-tolerant tightly-coupled robot coordination. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 464–469 (2002)Google Scholar
  8. 8.
    Kambayashi, Y., Takimoto, M.: Higher-order mobile agents for controlling intelligent robots. Int. J. Intell. Inf. Technol. (IJIIT) 1(2), 28–42 (2005)CrossRefGoogle Scholar
  9. 9.
    Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R., Casal, A.: Vehicle/arm coordination and mobile manipulator decentralized cooperation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 546–553 (1996)Google Scholar
  10. 10.
    Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30(1–2), 85–101 (2000)CrossRefGoogle Scholar
  11. 11.
    Lumer, E.D., Faiesta, B.: Diversity and adaptation in populations of clustering ants, from animals to animats 3. In: Proceedings of the 3rd International Conference on the Simulation of Adaptive Behavior, pp. 501–508. MIT Press (1994)Google Scholar
  12. 12.
    Mataric, M.J., Nilsson, M., Simsarian, K.T.: Cooperative multi-robot box-pushing. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 556–561 (1995)Google Scholar
  13. 13.
    Mizutani, M., Takimoto, M., Kambayashi, Y.: Ant colony clustering using mobile agents as ants and pheromone. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS, vol. 5990, pp. 435–444. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Nagata, T., Takimoto, M., Kambayashi, Y.: Suppressing the total costs of executing tasks using mobile agents. In: Proceedings of Hawaii International Conference on System Sciences 42 CD-ROM (2009)Google Scholar
  15. 15.
    Rus, D., Donald, B., Jennings, J.: Moving furniture with teams of autonomous robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 235–242 (1995)Google Scholar
  16. 16.
    Shibuya, R., Takimoto, M., Kambayashi, Y.: Suppressing energy consumption of transportation robots using mobile agents. In: Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART 2013), SciTePress, pp. 219–224 (2013)Google Scholar
  17. 17.
    Shintani, M., Lee, S., Takimoto, M., Kambayashi, Y.: A serialization algorithm for mobile robots using mobile agents with distributed ant colony clustering. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 260–270. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  18. 18.
    Shintani, M., Lee, S., Takimoto, M., Kambayashi, Y.: Synthesizing pheromone agents for serialization in the distributed ant colony clustering. In: ECTA and FCTA 2011 - Proceedings of the International Conference on Evolutionary Computation Theory and Applications and the Proceedings of the International Conference on Fuzzy Computation Theory and Applications (parts of the International Joint Conference on Computational Intelligence IJCCI 2011), SciTePress, pp. 220–226Google Scholar
  19. 19.
    Stilwell, D.J., Bay, J.S.: Toward the development of a material transport system using swarms of ant-like robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 766–771 (1993)Google Scholar
  20. 20.
    Takimoto, M., Mizuno, M., Kurio, M., Kambayashi, Y.: Saving energy consumption of multi-robots using higher-order mobile agents. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 549–558. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  21. 21.
    Wand, T., Zhang, H.: Collective sorting with multi-robot. In: Proceedings of the First IEEE International Conference on Robotics and Biomimetics, pp. 716–720 (2004)Google Scholar
  22. 22.
    Wang, Z.D., Kimura, Y., Takahashi, T., Nakano, E.: A control method of a multiple non-holonomic robot system for cooperative object transportation. In: Proceedings of the 5th International Symposium on Distributed Autonomous Robotic Systems on Distributed Autonomous Robotic Systems 4, pp. 447–456 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ryo Takahashi
    • 1
  • Munehiro Takimoto
    • 1
    Email author
  • Yasushi Kambayashi
    • 2
  1. 1.Department of Information SciencesTokyo University of ScienceNodaJapan
  2. 2.Department of Computer and Information EngineeringNippon Institute of TechnologyMiyashiro-machi, Minamisaitama-gunJapan

Personalised recommendations