Influence of the Interest Operators in the Detection of Spontaneous Reactions to the Sound

  • A. FernándezEmail author
  • J. Marey
  • M. Ortega
  • M. G. Penedo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8946)


Hearing plays a key role in our social participation and daily activities. In health, hearing loss in one of the most common conditions, so its diagnosis and monitoring is highly important. The standard test for the evaluation of hearing is the pure tone audiometry, which is a behavioral test that requires a proper interaction and communication between the patient and the audiologist. This need of understanding is which makes this test unworkable when dealing with patients with severe cognitive decline or other communication disorders. In these particular cases, the audiologist base the evaluation in the detection of spontaneous facial reaction that may indicate auditory perception. With the aim of supporting the audiologist, a screening method that analyzes video sequences and seeks for eye gestural reactions was proposed. In this paper, a comprehensive survey about one of the crucial steps of the methodology is presented. This survey determines the optimal configuration for all of them, and evaluates in detail their combination with different classification techniques. The obtained results provide a global vision of the suitability of the different interest operators.


Hearing assesment Gesture information Eye movement analysis 



This research has been partially funded by Ministerio de Ciencia e Innovación of the Spanish Government through the research projects TIN2011-25476.


  1. 1.
    Davis, A.: The prevalence of hearing impairment and reported hearing disability among adults in Great Britain. Int. J. Epidemiol. 18, 911–917 (1989)CrossRefGoogle Scholar
  2. 2.
    IMSERSO: Las personas mayores en España. In: Instituto de Mayores y Servicios Sociales (2008)Google Scholar
  3. 3.
    Murlow, C., Aguilar, C., Endicott, J., Velez, R., Tuley, M., Charlip, W., Hill, J.: Association between hearing impairment and the quality of life of elderly individuals. J. Am. Geriatr. Soc. 38, 45–50 (1990)CrossRefGoogle Scholar
  4. 4.
    Davis, A.: Prevalence of hearing impairment. In: Davis, A. (ed.) Hearing in Adults, Chapter 3, pp. 45–46. Whurr Ltd., London (1995)Google Scholar
  5. 5.
    Espmark, A., Rosenhall, U., Erlandsson, S., Steen, B.: The two faces of presbiacusia: hearing impairment and psychosocial consequences. Int. J. Audiol. 42, 125–135 (2002)CrossRefGoogle Scholar
  6. 6.
    Happy, S., George, A., Routray, A.: A real time facial expression classification system using local binary patterns. In: 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI), pp. 1–5 (2012)Google Scholar
  7. 7.
    Chew, S.W., Rana, R., Lucey, P., Lucey, S., Sridharan, S.: Sparse temporal representations for facial expression recognition. In: Ho, Y.-S. (ed.) PSIVT 2011, Part II. LNCS, vol. 7088, pp. 311–322. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Fernandez, A., Ortega, M., Penedo, M.G., Cancela, B., Gigirey, L.M.: Automatic eye gesture recognition in audiometries for patients with cognitive decline. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 27–34. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 4, 85–107 (2001)Google Scholar
  10. 10.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981 - vol. 2, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1981)Google Scholar
  11. 11.
    Bouguet, J.Y.: Pyramidal implementation of the Lucas-Kanade feature tracker: description of the algorithm. Intel Corporation, Microprocessor Research Labs (2000)Google Scholar
  12. 12.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  13. 13.
    Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1994, Proceedings CVPR 1994, pp. 593–600 (1994)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  16. 16.
    Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Tenth IEEE International Conference on Computer Vision 2005, ICCV 2005, vol. 2, pp. 1508–1515 (2005)Google Scholar
  17. 17.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  18. 18.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Fernández
    • 1
    Email author
  • J. Marey
    • 1
  • M. Ortega
    • 1
  • M. G. Penedo
    • 1
  1. 1.Departamento de ComputaciónUniversidade da CoruñaCoruñaSpain

Personalised recommendations