A Probabilistic Approach to Represent Emotions Intensity into BDI Agents

  • João Carlos Gluz
  • Patricia Augustin JaquesEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8946)


The BDI (Belief-Desire-Intention) model is a well known reasoning architecture for intelligent agents. According to the original BDI approach, an agent is able to deliberate about what action to do next having only three main mental states: belief, desires and intentions. A BDI agent should be able to choose the more rational action to be done with bounded resources and incomplete knowledge in an acceptable time. As humans need emotions to make immediate decisions with incomplete information, some recent works have extending the BDI architecture in order to integrate emotions. However, as they only use logic to represent emotions, they are not able to define the intensity of the emotions. In this paper we present an implementation of the appraisal process of emotions into BDI agents using a BDI language that integrates logic and probabilistic reasoning. Hence, our emotional BDI implementation allows to differentiate between emotions and affective reactions. This is an important aspect because emotions tend to generate stronger response. Besides, the emotion intensity also determines the intensity of an individual reaction. In particular, we implement the event-based emotions with consequences for self based on the OCC cognitive psychological theory of emotions. We also present an illustrative scenario and its implementation.


BDI Emotions Appraisal OCC Bayesian decision networks BDN 



This work is supported by the following research funding agencies of Brazil: CAPES, CNPq, FAPERGS and RNP/CTIC.


  1. 1.
    Adam, C., Herzig, A., Longin, D.: A logical formalization of the OCC theory of emotions. Synthese 168(2), 201–248 (2009). CrossRefzbMATHGoogle Scholar
  2. 2.
    Bagozzi, R.P., Dholakia, U.M., Basuroy, S.: How effortful decisions get enacted: the motivating role of decision processes, desires, and anticipated emotions. J. Behav. Deci. Making 16(4), 273–295 (2003). CrossRefGoogle Scholar
  3. 3.
    Baral, C., Hunsaker, M.: Using the probabilistic logic programming language p-log for causal and counterfactual reasoning and non-naive conditioning. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 243–249. Morgan Kaufmann Publishers Inc., San Francisco (2007).
  4. 4.
    Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): Multi-Agent Programming: Languages, Platforms and Applications. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15. Springer, New York (2005). zbMATHGoogle Scholar
  5. 5.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak using Jason. Wiley Series in Agent Technology. Wiley, Chichester (2007) CrossRefzbMATHGoogle Scholar
  6. 6.
    Bratman, M.: What is intention? In: Cohen, P.R., Morgan, J.L., Pollack, M.E. (eds.) Intentions in Communications, pp. 15–31. Bradford books,MIT Press, Cambridge (1990)Google Scholar
  7. 7.
    Damasio, A.R.: Descartes’ Error : Emotion, Reason, and the Human Brain. G.P. Putnam, New York (1994)Google Scholar
  8. 8.
    Dias, J., Paiva, A.: I want to be your friend: establishing relations with emotionally intelligent agents. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2013, pp. 777–784. IFMAS, Richland (2013).
  9. 9.
    Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)CrossRefGoogle Scholar
  10. 10.
    Gebhard, P.: Alma: a layered model of affect. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 29–36. ACM, New York (2005).
  11. 11.
    Goleman, D.: Emotional Intelligence. Random House Publishing Group (2012).
  12. 12.
    Isen, A.M., Patrick, R.: The effect of positive feelings on risk taking: When the chips are down. Organ. Behav. Hum. Perform. 31(2), 194–202 (1983).
  13. 13.
    Izard, C.E.: Emotion-cognition relationships and human development. In: Izard, C.E., Kagan, J., Zajonc, R.B. (eds.) Emotions, Cognition, and Behavior, pp. 17–37. Social Science Research Council, Cambridge University Press (1984).
  14. 14.
    Jaques, P.A., Vicari, R., Pesty, S., Martin, J.-C.: Evaluating a cognitive-based affective student model. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 599–608. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Jiang, H., Vidal, J., Huhns, M.N.: International Conference On Autonomous Agents. ACM, New York (2007)Google Scholar
  16. 16.
    Korb, K., Nicholson, A.: Bayesian Artificial Intelligence. Chapman & Hall/CRC Computer Science & Data Analysis, Taylor & Francis (2003).
  17. 17.
    Milch, B., Koller, D.: Probabilistic models for agents’ beliefs and decisions. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 389–396. Morgan Kaufmann Publishers Inc., San Francisco (2000).
  18. 18.
    Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal Theories of Emotion: State of the Art and Future Development. Emotion Review 5(2), 119–124, May 2013.
  19. 19.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press (1990).
  20. 20.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988) zbMATHGoogle Scholar
  21. 21.
    Picard, R.W.: Affective Computing. University Press Group Limited (2000).
  22. 22.
    Plutchik, R.: A general psychoevolutionary theory of emotion. In: Plutchik, R., Kellerman, H. (eds.) Emotion: Theory, Research, and Experience, vol. 1(3), pp. 3–33. Academic Press, New York (1980)CrossRefGoogle Scholar
  23. 23.
    Raghunathan, R., Pham, M.T.: All negative moods are not equal: Motivational influences of anxiety and sadness on decision making. Organizational Behavior and Human Decision Processes 79(1), 56–77 (1999)CrossRefGoogle Scholar
  24. 24.
    Rao, A.S., Georgeff, M.: BDI agents: from theory to practice. Technical report Technical Note 56, Melbourne, Australia (1995)Google Scholar
  25. 25.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence, Pearson Education/Prentice Hall (2010).
  26. 26.
    Scherer, K.R.: Psychological models of emotion. In: Borod, J. (ed.) The Neuropsychology of Emotion, Chap. 6, vol. 137, pp. 137–162. Oxford University Press, Oxford (2000)Google Scholar
  27. 27.
    Scherer, K.R.: Appraisal theory. In: Dalgleish, T., Power, M. (eds.) Handbook of Cognition and Emotion, Chap. 30, vol. 19, pp. 637–663. Wiley (1999).
  28. 28.
    Signoretti, A., Feitosa, A., Campos, A.M., Canuto, A.M., Xavier-Junior, J.C., Fialho, S.V.: Using an affective attention focus for improving the reasoning process and behavior of intelligent agents. In: Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Volume 02, WI-IAT 2011, pp. 97–100. IEEE Computer Society, Washington, DC (2011).
  29. 29.
    Silva, D., Gluz, J.: AgentSpeak(PL): a new programming language for BDI agents with integrated bayesian network model. In: 2011 International Conference on Information Science and Applications. IEEE (2011)Google Scholar
  30. 30.
    Steunebrink, B.R., Dastani, M., Meyer, J.J.: A formal model of emotions: Integrating qualitative and quantitative aspects. In: European Conference on Artificial Intelligence, ECAI 2008, vol. 178, pp. 256–260. IOS Press, Patras, Greece (2008). doi: 10.3233/978-1-58603-891-5-256
  31. 31.
    Steunebrink, B., Dastani, M., Meyer, J.J.: A formal model of emotion triggers: an approach for bdi agents. Synthese 185(1), 83–129 (2012).
  32. 32.
    Van Dyke Parunak, H., Bisson, R., Brueckner, S., Matthews, R., Sauter, J.: A model of emotions for situated agents. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems AAMAS 2006, p. 993 (2006).
  33. 33.
    Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, Chichester (2009)Google Scholar
  34. 34.
    Wooldridge, M.: Intelligent agents. In: Weiss, G. (ed.) Multiagent Systems, pp. 27–77. MIT Press, Cambridge (1999).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.PIPCA - UNISINOSSão LeopoldoBrazil

Personalised recommendations