Skip to main content

Concept Development

  • Chapter
  • First Online:
Eco-efficiency of Grinding Processes and Systems
  • 738 Accesses

Abstract

Building on the information provided in the previous chapter, this one propose a concept which makes it possible to describe, model, evaluate and improve the grinding process and system. The concept shall support the planning of new or the improvement of existing grinding processes and systems. For this purpose, the requirements and characteristics of the proposed concept are presented in the first step. Followed by a general description of the proposed concept, each concept element is presented in detail. This detailed presentation includes the illustration of the process and system, the specification of the procedure used to model the technological, economic and environmental indicators, and the evaluation as well as the improvement procedures. The chapter ends with the presentation of the proposed application cycle to evaluate and improve the eco-efficiency of grinding processes and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alduchov, O.A., Eskridge, R.E. (1996): Improved Magnus Form Approximation of Saturation Vapor Pressure. Journal of Applied Meteorology and Climatology, 35:601-609.

    Google Scholar 

  • Ali, S.H. (2011): Ecological Comparison of Synthetic versus Mined Diamonds. Working paper, Institute for Environmental Diplomacy and Security, University of Vermont.

    Google Scholar 

  • Archard, J.F. (1961): Single Contacts and Multiple Encounters. Journal of Applied Physics, 32/8:1420-1425.

    Google Scholar 

  • Armstrong, J.S., Collopy, F. (1992): Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8/1:69-80.

    Google Scholar 

  • Badger, J.A., Torrance, A.A. (2000): A comparison of two models to predict grinding forces from wheel surface topography. International Journal of Machine Tools and Manufacture, 40/8:1099-1120.

    Google Scholar 

  • Banks, J., Carson II, J.S., Nelson, B.L., Nicol, D.M. (2004): Discrete-Event System Simulation. Fourth Edition. Prentice Hall, Upper Saddle River, USA.

    Google Scholar 

  • Baumann, W., Herberg-Liedkte, B. (1996): Chemikalien in der Metallbearbeitung. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Beverley, K.J. (2000): Evaporation of liquids from structured and non-structured mixtures. Ph.D Thesis, The University of Hull, Hull, UK.

    Google Scholar 

  • Bierlich, R. (1976): Technologische Voraussetzungen zum Aufbau eines adaptiven Regelungssystems beim Außenrundschleifen. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Bildner, C. (2011): Microsoft Excel 2010. Basiswissen. readersplanet, Passau, Germany.

    Google Scholar 

  • Boyd, S., Kim, S.-J., Vanderberghe, L., Hassibi, A. (2007): A Tutorial on Geometric Programming. Optimization and Engineering, 8/1:67-127.

    Google Scholar 

  • Büttner, A. (1968): Das Schleifen sprödharter Werkstoffe mit Diamant-Topfscheiben: unter besonderer Berücksichtigung des Tiefschleifens. Dr.-Ing. Dissertation, TU Hannover, Hannover, Germany.

    Google Scholar 

  • Challen, J.M., Oxley, P.L.B. (1979): An explanation of the different regimes of friction and wear using asperity deformation models. Wear, 53/2:229-243.

    Google Scholar 

  • Chen, X., Rowe, W.B. (1996): Analysis and simulation of the grinding process. Part II: Mechanics of grinding. International Journal of Machine Tools and Manufacture, 36/8:883-896.

    Google Scholar 

  • Czenkusch, C. (2000): Technologische Untersuchungen und Prozessmodelle zum Rundschleifen. Dr.-Ing. Dissertation, Universität Hannover, Fortschrittsbericht, VDI Verlag, VDI-Reihe 2/530.

    Google Scholar 

  • Davis, J.R. (1995): ASM Specialty Handbook Tool Materials. ASM International, Ohio, USA.

    Google Scholar 

  • Deming, W.E. (2000): Out of the crisis. The MIT Press, Cambridge, USA.

    Google Scholar 

  • Dettmer, T. (2006): Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Vulkan Verlag, Essen, Germany.

    Google Scholar 

  • Dias, A.C., Arroja, L., Capela, I. (2007): Life Cycle Assessment of Printing and Writing Paper Produced in Portugal. The International Journal of Life Cycle Assessment, 12/7:521-528.

    Google Scholar 

  • DIN 50320:1979-12 (1979): Verschleiß; Begriffe, Systemanalyse von Verschleißvorgängen, Gliederung des Verschleißgebietes. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN ISO 14045 (2012): Umweltmanagement - Ökoeffizienzbewertung von Produktsystemen - Prinzipien, Anforderungen und Leitlinien (ISO 14045:2012). Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN ISO 14051 (2011): Umweltmanagement - Materialflusskosten-rechnung - Allgemeine Rahmenbedingungen (ISO 14051:2011). Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN ISO 4287:2010-07 (2010): Geometrische Produktspezifikation (GPS) - Oberflächenbeschaffenheit: Tastschnittverfahren - Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • Eckstein, P.P. (2014): Statistik für Wirtschaftswissenschaftler - Eine realdatenbasierte Einführung mit SPSS. Springer Gabler, Wiesbaden, Germany.

    Google Scholar 

  • Fahrmeir, L., Künstler, R., Pigeot, I., Tutz, G. (2007): Statistik - Der Weg zur Datenanalyse. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Fathima, K., Kumar, A.S., Rahman, M., Lim, H.S. (2003): A study on wear mechanism and wear reduction strategies in grinding wheels used for ELID grinding. Wear, 254/12:1247-1255.

    Google Scholar 

  • Fingas, M.F. (2012): Studies on the Evaporation Regulation Mechanisms of Crude Oil and Petroleum Products. Advances in Chemical Engineering and Science, 2/2:246-256.

    Google Scholar 

  • Fuchs, H., Albrecht, W. (Ed.) (2012): Vliesstoffe - Rohstoffe, Herstellung, Anwendung, Eigenschaften, Prüfung. WILEY-VCH Verlag, Weinheim, Germany.

    Google Scholar 

  • GlaconChemie (2012): Your Green Chemistry Company. Produktinformation, Merseburg, Germany.

    Google Scholar 

  • Grüntzig, A.W. (2011): Modeling of grinding wheel wear in electrolytic in-process dressing (ELID) grinding. Dr.-Ing. Dissertation, RWTH Aachen, Apprimus Verlag, Aachen, Germany.

    Google Scholar 

  • Guinée, J. (Ed.) (2004): Handbook on Life Cycle Assessment - Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Guo, W. Jia, X. Guo, W.L, Xu, H.W., Shang, J., Ma, H.A. (2010): Effects of additive LiF on the synthesis of cBN in the system of Li3 N–hBN at HPHT. Diamond and Related Materials, 19/10:1296-1299.

    Google Scholar 

  • Hansen, A., Hallmann, C., Schmehl, M. (2005): Produktökobilanz nichtwassermischbarer Kühlschmierstoffe auf Basis von Mineralöl, pflanzlichen Ölen sowie Altspeisefetten und technischen tierischen Fetten. DBU Abschlussbericht AZ 19122, Braunschweig, Germany.

    Google Scholar 

  • Heuer, W. (1992): Außenrundschleifen mit kleinen keramisch gebundenen CBN-Schleifscheiben. Dr.-Ing. Dissertation, TU Hannover, Hannover, Germany.

    Google Scholar 

  • Hokkirigawa, K., Kato, K., Li, Z.Z. (1988): The effect of hardness on the transition of the abrasive wear mechanism of steels. Wear, 123/2:241-251.

    Google Scholar 

  • Hokkirigawa, K., Kato, T., Fukuda, T., Shinooka, M. (1998): Experimental and theoretical analysis of wear mechanism of metals in tilted block on plate type sliding. Wear, 214/2:192-201.

    Google Scholar 

  • Ichida, Y., Fujimoto, M., Inoue, Y., Matsui, K. (2010): Development of High-Performance Vitrified Grinding Wheels using Ultrafine-Crystalline cBN Abrasive Grains. Journal of Advanced Mechanical Design Systems and Manufacturing, 4:1005-1014.

    Google Scholar 

  • Kassen, G. (1969): Beschreibung der elementaren Kinematik des Schleifvorganges. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Kent, J.A. (2007): Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology. Springer Science + Business Media, New York, USA.

    Google Scholar 

  • Klocke, K. (2009): Manufacturing processes 2 - Grinding, honing, lapping, Berlin, Germany.

    Google Scholar 

  • Kloke, U. (2003): Auslegung von Bauteilreinigungsanlagen mit Hilfe eines Fachinformationssystems. Dr.-Ing. Dissertation, Universität Dortmund, Dortmund, Germany.

    Google Scholar 

  • Klöpfer, W., Grahl, B. (2009): Ökobilanz (LCA) - Ein Leitfaden für Ausbildung und Beruf. WILEY-VCH Verlag, Weinheim, Germany.

    Google Scholar 

  • Knop, M. (1989): Rechnergeführte Stellgrößenwahl beim Außenrundeinstechschleifen - Abrichtereinfluß und Temperaturberechnung. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Kuhrke, B. (2011): Methode zur Energie- und Medienbedarfsbewertung spanender Werkzeugmaschinen. Dr.-Ing. Dissertation, Technische Universität Darmstadt, epubli, Berlin, Germany.

    Google Scholar 

  • Kunsleben, A., Tschesche, J.R. (2010): Resource Cost Accounting (RKR) – A Synthesis of Business Management and Technology. Chemical Engineering & Technology, 33/4:589-592.

    Google Scholar 

  • Li, W. (2012): Energy and eco-efficiency of manufacturing processes. Ph.D Thesis, The University of New South Wales, Sydney, Australia.

    Google Scholar 

  • Li, W., Zein, A., Kara, S., Herrmann, C. (2011): An Investigation into Fixed Energy Consumption of Machine Tools. Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, May 2-4, 268-273.

    Google Scholar 

  • Lin, C.C. (2004): A weighted max-min model for fuzzy goal programming. Fuzzy Sets and Systems, 142/3:407-420.

    Google Scholar 

  • Linke, B., Overcash, M. (2012): Life Cycle Analysis of Grinding. Proceedings of the 19th CIRP Conference on Life Cycle Engineering, University of California at Berkeley, Berkeley, USA, May 23-25, 293-298.

    Google Scholar 

  • Linke, B.S. (2014): Sustainability concerns in the life cycle of bonded grinding tools. CIRP Journal of Manufacturing Science and Technology, 7:258-263.

    Google Scholar 

  • Linke, K. (1992): Kennwerte keramisch gebundener Schleifscheiben. Dr.-Ing. Dissertation, TU Berlin, Carl Hanser Verlag, Berlin/ München, Germany.

    Google Scholar 

  • LTA Lufttechnik GmbH (2014): Produkte, Nordrach, Germany.

    Google Scholar 

  • Mackay, D., Matsugu, R.S. (1973): Evaporation rates of liquid hydrocarbon spills on land and water. The Canadian Journal of Chemical Engineering, 51:434-439.

    Google Scholar 

  • Madanchi, N., Winter, M., Herrmann, C. (2015): Cutting fluid drag-out and exhaust air in grinding processes: Influence on the eco-efficiency. Proceedings of the 22th CIRP Conference on Life Cycle Engineering, The University of New South Wales, Sydney, Australia, April 7-9.

    Google Scholar 

  • Malkin, S. (1968): The attritious and fracture wear of grinding wheels. Ph.D Thesis, Massachusetts Institute of Technology, Boston, USA.

    Google Scholar 

  • Malkin, S., Guo, C. (2008): Grinding Technology: Theory and Applications of Machining with Abrasives. Industrial Press, New York, USA.

    Google Scholar 

  • Mang, T., Dresel, W. (2007): Lubricants and Lubrication. WILEY-VCH Verlag, Weinheim, Germany.

    Google Scholar 

  • Metzger, J.L. (1986): Superabrasive Grinding. Butterworth-Heinemann, Oxford, UK.

    Google Scholar 

  • Montgomery, D.C. (2013): Design and analysis of experiments. John Wiley & Sons, Hoboken, USA.

    Google Scholar 

  • Mortier, R.M., Fox, M.F., Orzulik, S.T. (2006): Chemistry and Technology of Lubricants. Springer Science + Business Media, Dordrecht, Netherlands.

    Google Scholar 

  • Murray, V.R., Zhao, F., Sutherland, J.W. (2012): Life cycle analysis of grinding: a case study of non-cylindrical computer numerical control grinding via a unit-process life cycle inventory approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226/10:1604-1611.

    Google Scholar 

  • Muthu, S.S. (2014): Assessing the Environmental Impact of Textiles and the Clothing Supply Chain. Woodhead Publishing, Cambridge, UK.

    Google Scholar 

  • Paulmann, R. (1994): Schleifen, Honen, Läppen: Grundlagen zu einem Verfahrensvergleich. Dr.-Ing. Dissertation, TU Braunschweig, VDI-Verlag, Braunschweig/ Düsseldorf, Germany.

    Google Scholar 

  • Petuelli, G. (Ed.) (2002): Simulation des Kühlschmierstoffkreislaufs zur Optimierung einer umwelt- und ressourcenschonenden Produktionstechnik. DBU Abschlussbericht FZ 13581, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Plinke, W., Rese, M. (2006): Industrielle Kostenrechnung - Ein Einführung. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Purchas, D.B., Sutherland, K. (2002): Handbook of Filter Media. Elsevier Advanced Technology, Oxford, UK.

    Google Scholar 

  • Rabiey, M. (2010): Dry Grinding with cBN Wheels - The effect of structuring. Dr.-Ing. Dissertation, Universität Stuttgart, Jost-Jetter Verlag, Stuttgart, Germany.

    Google Scholar 

  • Rowe, W.B. (2009): Principles of modern grinding technology. William Andrew, Elsevier, Oxford, UK.

    Google Scholar 

  • Schenk, M., Wirth, S., Müller, E. (2014): Fabrikplanung und Fabrikbetrieb. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Schleich, H. (1982): Schärfen von Bornitridschleifscheiben. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Schlosser, R. (2013): Methodik zur Prognose der Nachhaltigkeit des Energie- und Stoffeinsatzes spanender Fertigungsprozesse. Dr.-Ing. Dissertation, RWTH Aachen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Siniawski, M.T., Harris, S.J., Wang, Q. (2007): A universal wear law for abrasion. Wear, 262/7-8:883-888.

    Google Scholar 

  • SKM Enviros (2011): Estimating the Energy Saving Potential from Small Motors and Machine Tools. Report on Machine Tools Research & Modelling, Manchester, UK.

    Google Scholar 

  • Spiegel, P. (1994): Einsatzvorbereitung kunstharzgebundener CBN-Schleifscheiben. Dr.-Ing. Dissertation, Universität Kaiserslautern, Kaiserslautern, Germany.

    Google Scholar 

  • Stiver, W., Mackay, D. (1984): Evaporation Rate of Spills of Hydrocarbons and Petroleum Mixtures. Environmental Science & Technology, 18/11:834-840.

    Google Scholar 

  • Sutton, O.G. (1934): Wind Structure and Evaporation in a Turbulent Atmosphere. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 146/858:701-722.

    Google Scholar 

  • Thiede, S. (2012): Energy Efficiency in Manufacturing Systems. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Torrance, A.A., Badger, J.A. (2000): The relation between the traverse dressing of vitrified grinding wheels and their performance. International Journal of Machine Tools and Manufacture, 40/12:1787-1811.

    Google Scholar 

  • Triemel J. (1976): Schleifen mit Bornitrid. Technischer Verlag Resch, Gräfelfing, Germany.

    Google Scholar 

  • Umweltbundesamt (2000): Ökologische Bilanzierung von Altöl-Verwertungswegen. UBA-Texte 20/00, Berlin, Germany.

    Google Scholar 

  • VDI 2089-1 (2010): Technische Gebäudeausrüstung von Schwimmbädern - Hallenbäder. VDI-Gesellschaft Bauen und Gebäudetechnik, Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • VDI 2884 (2005): Beschaffung, Betrieb und Instandhaltung von Produktionsmitteln unter Anwendung von Life Cycle Costing (LCC). VDI-Handbuch Betriebstechnik, Teil 4, Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • Vel, L., Demazeau, G., Etourneau, J. (1991): Cubic boron nitride: synthesis, physicochemical properties and applications. Materials Science and Engineering, 10/2:149-164.

    Google Scholar 

  • Venkateshan, S.P., Swaminathan, P. (2014): Computational methods in engineering. Academic Press, Oxford, UK.

    Google Scholar 

  • Verkerk, J. (1977): Presentation of the final report on the cooperative work on grinding wheel topography. CIRP Annals - Manufacturing Technology, 26/2:299-304.

    Google Scholar 

  • Webster, J.A. (2007): Improving surface integrity and economics of grinding by optimum coolant application, with consideration of abrasive tool and process regime. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221/12:1665-1675.

    Google Scholar 

  • Wentorf, R.H. (1957): Cubic Form of Boron Nitride. The Journal of Chemical Physics, 26/4:956-956.

    Google Scholar 

  • Winter, M., Bock, R., Herrmann, C. (2013): Investigation of a new polymer-water based cutting fluid to substitute mineral oil based fluids in grinding processes. CIRP Journal of Manufacturing Science and Technology, 6/4:254-262.

    Google Scholar 

  • Winter, M., Ibbotson, S, Kara, S., Herrmann, C. (2015): Life cycle assessment of cubic boron nitride grinding wheels. Journal of Cleaner Production, 107:707-721.

    Google Scholar 

  • Winter, M., Li, W., Kara, S., Herrmann, C. (2014): Determining optimal process parameters to increase the eco-efficiency of grinding processes. Journal of Cleaner Production, 66:644-645.

    Google Scholar 

  • Winterthur Technology Group (2011): Precision grinding wheels - 2011 Catalogue.

    Google Scholar 

  • Xie, Y., Williams, J.A. (1996): The prediction of friction and wear when a soft surface slides against a harder rough surface. Wear, 196/1-2:21-34.

    Google Scholar 

  • Yegenoglu, K. (1986): Berechnung von Topographiekenngrößen zur Auslegung von CBN-Schleifprozessen. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Zein, A. (2012): Transition Towards Energy Efficient Machine Tools. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Zitt, U.R. (1999): Modellierung und Simulation von Hochleistungsschleifprozessen. Dr.-Ing. Dissertation, Universität Kaiserslautern, Kaiserslautern, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Winter .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Winter, M. (2016). Concept Development. In: Eco-efficiency of Grinding Processes and Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-25205-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25205-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25203-2

  • Online ISBN: 978-3-319-25205-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics