Skip to main content
  • 718 Accesses

Abstract

The state of research is reviewed in this chapter. The review comprises current research approaches in describing, modelling, evaluating and improving the economic, environmental and technological impact of machining processes. These approaches are comprehensively evaluated with the aim of providing a comparative overview. The chapter highlights the need for further research on how to describe, mode, evaluate and to improve eco-efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderberg, S. (2012): Methods for improving performance of process planning for CNC machining. Ph.D Thesis, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  • Anderberg, S., Kara, S., Beno, T. (2009): Impact of energy efficiency on computer numerically controlled machining. Proceedings of The Institution of Mechanical Engineers Part B-journal of Engineering Manufacture, 224/4:531-541.

    Google Scholar 

  • Aurich, J.C., Carrella, M., Steffens, M. (2012): Evaluation of Abrasive Processes and Machines with Respect to Energy Efficiency. Proceedings of the 19th CIRP Conference on Life Cycle Engineering, University of California at Berkeley, Berkeley, USA, May 23-25, 329-333.

    Google Scholar 

  • Aurich, J.C., Linke, B., Hauschild, M., Carella, M., Kirsch, B. (2013): Sustainability of abrasive processes. CIRP Annals - Manufacturing Technology, 62/2:653-672.

    Google Scholar 

  • Avram, O., Stroud, I., Xirouchakis, P. (2011): A multi-criteria decision method for sustainability assessment of the use phase of machine tool systems. The International Journal of Advanced Manufacturing Technology, 53/5-8:811-828.

    Google Scholar 

  • Basu, S., Sutherland, J.W. (1999): Multi-objective decision making in environmentally conscious manufacturing. Presented at the 6th CIRP International Seminar on Life Cycle Engineering, 323-331.

    Google Scholar 

  • Behrendt, T., Zein, A., Min, S. (2012): Development of an energy consumption monitoring procedure for machine tools. CIRP Annals - Manufacturing Technology, 61/1:43-46.

    Google Scholar 

  • Bhushan, R.K. (2013): Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production, 39:242-254.

    Google Scholar 

  • Binding, H.J. (1988): Grundlagen zur systematischen Reduzierung des Energie- und Materialeinsatzes. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Branham, M., Gutowski, T., Jones, A., Sekulic, D. (2008): A Thermodynamic Framework for Analyzing and Improving Manufacturing Processes. 16th IEEE International Symposium on Electronics and the Environment, San Francisco, USA, May 19-20, 1-6.

    Google Scholar 

  • Choi, A.C.K., Kaebernick, H., Lai, W.H. (1997): Manufacturing processes modelling for environmental impact assessment. Journal of Materials Processing Technology, 70/1-3:231-238.

    Google Scholar 

  • Clarens, A.F., Zimmermann, J.B., Keoleian, G.A., Hayes, K.F., Skerlos, S.J. (2008): Comparison of Life Cycle Emissions and Energy Consumption for Environmentally Adapted Metalworking Fluid Systems. Environmental Science & Technology, 42/22:8534-8540.

    Google Scholar 

  • Creyts, J.C., Carey, V.P. (1999): Use of extended energy analysis to evaluate the environmental performance of machining processes. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 213/4:247-264.

    Google Scholar 

  • Czenkusch, C. (2000): Technologische Untersuchungen und Prozessmodelle zum Rundschleifen. Dr.-Ing. Dissertation, Universität Hannover, Fortschrittsbericht, VDI Verlag, VDI-Reihe 2/530.

    Google Scholar 

  • Dahmus, J.B., Gutowski, T.G. (2004): An Environmental Analysis of Machining. Proceedings of ASME International Mechanical Engineering Congress and R&D Exposition, 13-19.

    Google Scholar 

  • Denkena, B., Reichstein, M., Kramer, N., Jacobsen, J., Jung., M. (2005): Eco- and energy-efficient grinding processes. Key Engineering Materials, 291-292:39-44.

    Google Scholar 

  • Dettmer, T. (2006): Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Vulkan Verlag, Essen. Germany.

    Google Scholar 

  • Devoldere, T., Dewulf, W., Deprez, W., Willems, W., Duflou, J.R. (2007): Improvement potential for energy consumption in discrete part production machines. Proceedings of the 14th CIRP Conference on Life Cycle Engineering, g, Waseda University, Tokyo, Japan, June 11–13, 311-316.

    Google Scholar 

  • Diaz-Elsayed, N. (2013): Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making. Ph.D Thesis, University of California, Berkeley, USA.

    Google Scholar 

  • Dietmair, A., Verl, A. (2010): A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing. International Journal of Sustainable Engineering, 2/2:123-133.

    Google Scholar 

  • Draganescu, F., Gheorghe, M., Doicin, C.V. (2003): Models of machine tool efficiency and specific consumed energy. Journal of Materials Processing Technology, 141/1:9-15.

    Google Scholar 

  • Eckebrecht, J. (2000): Umweltverträgliche Gestaltung von spanenden Fertigungsprozessen. Dr.-Ing. Dissertation, Universität Bremen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Frăţilă, D. (2009): Evaluation of near dry machining effects on gear milling process. Journal of Cleaner Production, 17/9:839-845.

    Google Scholar 

  • Frăţilă, D. (2010): Macro-level environmental comparison of near-dry machining and flood machining. Journal of Cleaner Production, 18/10-11:1031-1039.

    Google Scholar 

  • Garcia, E., Pombo, I., Sanchez, J.A., Ortega, N., Izquierdo, B., Plaza, S., Marquinez, J.I., Heinzel, C., Mourek, D. (2013): Reduction of oil and gas consumption in grinding technology using high pour-point lubricants. Journal of Cleaner Production, 51:99-108.

    Google Scholar 

  • Gutowski, T.G., Dahmus, J.B., Thiriez, A. (2006): Electrical energy requirements for manufacturing processes. The 13th CIRP International Conference on Life Cycle Engineering, Katholieke Universiteit Leuven, Belgium, May 31 - June 2, 623-627.

    Google Scholar 

  • Gutowski, T.G., Dahmus, J.B., Thiriez, A., Branham, M., Jones, A. (2007): A thermodynamic characterization of manufacturing processes. IEEE International Symposium on Electronics and the Environment, 137-142.

    Google Scholar 

  • Helu, M. (2013): Leveraging Manufacturing Precision to Reduce Product Life Cycle Environmental Impacts. Ph.D Thesis, University of California, Berkeley, USA.

    Google Scholar 

  • Helu, M., Behmann, B., Meier, H., Dornfeld, D., Lanza, G. (2012): Impact of green machining strategies on achieved surface quality. CIRP Annals - Manufacturing Technology, 61/1:55-58.

    Google Scholar 

  • Ilhan, R.E., Sathyanarayanan, G., Storer, R.H., Liao, T.W. (1992): Off-line multiresponse optimization of electrochemical surface grinding by a multi-objective programming method. International Journal of Machine Tools and Manufacture, 32/2:435-451.

    Google Scholar 

  • Jiang, Z., Zhang, H., Sutherland, J.W. (2012): Development of an environmental performance assessment method for manufacturing process plans. The International Journal of Advanced Manufacturing Technology, 58/5-8:783-790.

    Google Scholar 

  • Jin, K., Zhang, H.C., Balasubramaniam, P., Nage, S. (2009): A multiple objective optimization model for fenvironmental benign process planning. Proceedings of 16th International Conference on Industrial Engineering and Engineering Management, 869-873.

    Google Scholar 

  • Kellens, K. (2013): Energy and resource efficient manufacturing - Unit Process Analysis and Optimisation. Dr.-Ing. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium.

    Google Scholar 

  • Kellens, K., Dewulf, W., Overcash, M., Hauschild, M.Z., Duflou, J.R. (2012): Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory - CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: Methodology description (UPLCI). The International Journal of Life Cycle Assessment, 17/1:69-78.

    Google Scholar 

  • Kirsch, B., Effgen, C., Büchel, M., Aurich, J.C. (2014): Comparison of the embodied energy of a grinding wheel and an end mill. Procedia CIRP, 15:74-79.

    Google Scholar 

  • Klocke, F., Schlosser, R., Tönissen, S. (2010): Prozesseffizienz durch Parameterwahl. wt Werkstattstechnik online, 100/5:346-349.

    Google Scholar 

  • Knop, M. (1989): Rechnergeführte Stellgrößenwahl beim Außenrundeinstechschleifen. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Kong, D., Choi, S., Dornfeld, D.A. (2013): Software Support for Environmentally Benign Mold Making Process and Operations. 20th CIRP International Conference on Life Cycle Engineering, Singapore, April 17-19, 279-284.

    Google Scholar 

  • Kuhrke, B. (2011): Methode zur Energie- und Medienbedarfsbewertung spanender Werkzeugmaschinen. Dr.-Ing. Dissertation, Technische Universität Darmstadt, epubli GmbH, Berlin, Germany.

    Google Scholar 

  • Kundrák J., Mamalis A.G., Gyani K., Markopoulos, A. (2006): Environmentally Friendly Precision Machining. Materials and Manufacturing Processes, 21/1:29-37.

    Google Scholar 

  • Kuram, E., Ozcelik, B., Bayramoglu, M., Demirbas, E., Simsek, B.T. (2013): Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. Journal of Cleaner Production, 42:159-166.

    Google Scholar 

  • Larek, R. (2012): Ressourceneffiziente Auslegung von fertigungstechnischen Prozessketten durch Simulation und numerische Optimierung. Dr.-Ing. Dissertation, Universität Bremen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Li, G.F., Wang, L.S., Yang, L.B. (2002): Multi-parameter optimization and control of the cylindrical grinding process. Journal of Materials Processing Technology, 129/1-3:232-236.

    Google Scholar 

  • Li, W. (2012): Energy and eco-efficiency of manufacturing processes. Ph.D Thesis, The University of New South Wales, Sydney, Australia.

    Google Scholar 

  • Li, W., Kara, S. (2011): An empirical model for predicting energy consumption of manufacturing processes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225/9:1636-1646.

    Google Scholar 

  • Li, W., Winter, M., Kara, S., Herrmann, C. (2012): Eco-efficiency of manufacturing processes: A grinding case. CIRP Annals - Manufacturing Technology, 61/1:59-62.

    Google Scholar 

  • Linke, B., Duscha, M., Klocke, F., Dornfeld, D. (2011): Combination of Speed Stroke Grinding and High Speed Grinding with Regard to Sustainability. Proceedings of the 44th CIRP International Conference on Manufacturing Systems, June 1-3, Madison, USA.

    Google Scholar 

  • Linke, B.S., Corman, G.J., Dornfeld, D.A., Tönissen, S. (2013): Sustainability indicators for discrete manufacturing processes applied to grinding technology. Journal of Manufacturing Systems, 32/4:556-563.

    Google Scholar 

  • Linke, B.S., Das, J., Lam, M., Ly, C. (2014): Sustainability Indicators for Finishing Operations based on Process Performance and Part Quality. Procedia CIRP, 14:564-569.

    Google Scholar 

  • Liu, Q., Chen, X., Gindy, N. (2008): Robust design and optimisation of aerospace alloy grinding by different abrasive wheels. The International Journal of Advanced Manufacturing Technology, 11-12:1125-1135.

    Google Scholar 

  • Mori, M., Fujishima, M., Inamasu, Y., Oda, Y. (2011): A study on energy efficiency improvement for machine tools. CIRP Annals - Manufacturing Technology, 60/1:145-148.

    Google Scholar 

  • Morrow, W.R., Qi, H., Kim, I., Mazumder, J., Skerlos, S.J. (2004): Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15/10:932-943.

    Google Scholar 

  • Munoz, A.A., Sheng, P. (1995): An analytical approach for determining the environmental impact of machining processes. Journal of Materials Processing Technology, 53/3–4:736-758.

    Google Scholar 

  • Murray, V.R., Zhao, F., Sutherland, J.W. (2012): Life cycle analysis of grinding: a case study of non-cylindrical computer numerical control grinding via a unit-process life cycle inventory approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226/10:1604-1611.

    Google Scholar 

  • Narita, H., Kawamura, H., Norihisa, T., Chen, L., Fujimoto, H., Hasebe, T. (2006): Development of Prediction system of environmental burden for machine tool operation. JSME International Journal Series C, 49/4:1188-1195.

    Google Scholar 

  • Narita, N., Desmira, N., Fujimoto, H. (2008): Environmental burden analysis for machining operation using LCA method. Manufacturing Systems and Technologies for the New Frontier, The 41st CIRP Conference on Manufacturing Systems, May 26-28, 65-68.

    Google Scholar 

  • Oliveira, J.F.G., Alves, S.M. (2006): Development of Environmentally Friendly Fluid for CBN Grinding. CIRP Annals - Manufacturing Technology, 55/1:343-346.

    Google Scholar 

  • Osterhaus, G. (1994): Verfahrensübergreifende Simulation und Auslegung von Schleifprozessen. Dr.-Ing. Dissertation, RWTH Aachen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Pušavec, F., Krajnik, P., Kopač, J. (2010): Transitioning to sustainable production – Part I: application on machining technologies. Journal of Cleaner Production, 18/2:174-184.

    Google Scholar 

  • Rajemi, M.F., Mativenga, P.T., Aramcharoen, A. (2010): Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. Journal of Cleaner Production, 18/10–11:1059-1065.

    Google Scholar 

  • Reinhardt, S. (2013): Bewertung der Ressourceneffizienz in der Fertigung. Technische Universität München, Herbert Utz Verlag, München, Germany.

    Google Scholar 

  • Salonitis, K., Tsoukantas, G., Drakopoulos, S., Stavropoulos, P., Chryssolouris, G. (2006): Environmental Impact Assessment of Grind-Hardening Process. The 13th CIRP International Conference on Life Cycle Engineering, Katholieke Universiteit Leuven, Belgium, May 31 - June 2, 657-662.

    Google Scholar 

  • Schiefer, E. (2001): Ökologische Bilanzierung von Bauteilen für die Entwcklung umweltgerechter Produkte am Beispiel spanender Fertigungsverfahren. Dr.-Ing. Dissertation, Technische Universität Darmstadt, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Schlosser, R. (2013): Methodik zur Prognose der Nachhaltigkeit des Energie- und Stoffeinsatzes spanender Fertigungsprozesse. Dr.-Ing. Dissertation, RWTH Aachen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Schlosser, R., Klocke, F., Lung, D. (2011): Sustainability in Manufacturing - Energy Consumption of Cutting Processes. Advances in Sustainable Manufacturing - Proceedings of the 8th Global Conference on Sustainable Manufacturing, 85-90.

    Google Scholar 

  • Schultz, A. (2002): Methode zur integrierten ökologischen und ökonomischen Bewertung Produktionsprozessen und -technologien. Dr.-Ing. Dissertation, Otto-von-Guericke-Universität Madgeburg, Madgeburg, Germany.

    Google Scholar 

  • Shin, S.J. (2009): Development of a Framework for Green Productivity Enhancement. Ph.D Thesis, Pohang University of Science and Technology, Pohang, South Korea.

    Google Scholar 

  • Soković, M., Mijanović, K. (2001): Ecological aspects of the cutting fluids and its influence on quantifiable parameters of the cutting processes. Journal of Materials Processing Technology, 109/1–2:181-189.

    Google Scholar 

  • Srinivasan, M., Sheng, P. (1999a): Feature-based process planning for environmentally conscious machining - Part 1: microplanning. Robotics and Computer-Integrated Manufacturing, 15/3:257-270.

    Google Scholar 

  • Srinivasan, M., Sheng, P. (1999b): Feature based process planning for environmentally conscious machining - Part 2: macroplanning. Robotics and Computer-Integrated Manufacturing, 15/3:271-281.

    Google Scholar 

  • Thiede, S. (2012): Energy Efficiency in Manufacturing Systems. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Wang, Q., Liu, F., Wang, X. (2014): Multi-objective optimization of machining parameters considering energy consumption. The International Journal of Advanced Manufacturing Technology, 71/5-8:1133-1142.

    Google Scholar 

  • Wen, X.M., Tay, A.A.O., Nee, A.Y.C. (1992): Micro-computer-based optimization of the surface grinding process. Journal of Materials Processing Technology, 29/1-3:75-90.

    Google Scholar 

  • Wolfram, F. (1986): Aspekte der energetischen Bewertung von Produkten und Prozessen der Abtrenntechnik nach den Prinzipien der vergegenständlichen Energie. Dr.-Ing. Dissertation, Technische Hochschule Karl-Marx-Stadt, Karl-Marx-Stadt, German Democratic Republic.

    Google Scholar 

  • Xue, H., Kumar, V., Sutherland, J.W. (2007): Material flows and environmental impacts of manufacturing systems via aggregated input–output models. Journal of Cleaner Production, 15/13-14:1349-1358.

    Google Scholar 

  • Yan, J., Feng, C., Li, L. (2014): Sustainability assessment of machining process based on extension theory and entropy weight approach. The International Journal of Advanced Manufacturing Technology, 71/5-8:1419-1431.

    Google Scholar 

  • Yan, J., Li, L. (2013): Multi-objective optimization of milling parameters – the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52:462-471.

    Google Scholar 

  • Zein, A. (2012): Transition Towards Energy Efficient Machine Tools. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Zhang, H., Haapala, K.R. (2014): Integrating sustainable manufacturing assessment into decision making for a production work cell. Journal of Cleaner Production, In Press.

    Google Scholar 

  • Zhao, F., Bernstein, W.Z., Naik, G., Cheng, G.J. (2010): Environmental assessment of laser assisted manufacturing - case studies on laser shock peening and laser assisted turning. Journal of Cleaner Production, 18/13:1311-1319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Winter .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Winter, M. (2016). State of Research. In: Eco-efficiency of Grinding Processes and Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-25205-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25205-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25203-2

  • Online ISBN: 978-3-319-25205-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics