Skip to main content

Grinding, Modelling and Eco-efficiency

  • Chapter
  • First Online:
Eco-efficiency of Grinding Processes and Systems
  • 788 Accesses

Abstract

This chapter presents the theoretical foundations of this work. Firstly, the basics of the grinding process and the elements of the grinding system are illustrated. Secondly, modelling approaches and indicators are described. Lastly, the origin, definitions and approaches on how to achieve eco-efficiency are presented. The chapter ends with a preliminary conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S.H. (2011): Ecological Comparison of Synthetic versus Mined Diamonds. Working paper, Institute for Environmental Diplomacy and Security, University of Vermont.

    Google Scholar 

  • Altintas, Y., Weck, M. (2004): Chatter Stability of Metal Cutting and Grinding. CIRP Annals - Manufacturing Technology, 53/2:619–642.

    Google Scholar 

  • Badger, J.A., Torrance, A.A. (2000): A comparison of two models to predict grinding forces from wheel surface topography. International Journal of Machine Tools and Manufacture, 40/8:1099–1120.

    Google Scholar 

  • Baetge, J. (1974): Betriebswirtschaftliche Systemtheorie. Regelungstheoretische Planungs-Überwachungsmodelle für Produktion, Lagerung und Absatz. Westdeutscher Verlag, Opladen, Germany.

    Google Scholar 

  • BAFA (Bundesamt für Wirtschaft und Ausfuhrkontrollen - Referat 423) (2014): Amtliche Mineralöldaten - Entwicklung von Inlandsschmierstoffablieferungen 2006–2013.

    Google Scholar 

  • Bain & Company (2011): The Global Diamond Industry - Lifting the Veil of Mystery.

    Google Scholar 

  • Baseri, H., Rezaei, S. M., Rahimi, A., Saadat, M. (2008): Workpiece surface roughness prediction in grinding process for different disc dressing conditions - Part 2: Effects of the wheel topographical parameters on the specific energy and workpiece surface roughness. Machining Science and Technology, 12:197–213.

    Google Scholar 

  • BCSD (Business Council for Sustainable Development) (1993): Getting Eco-Efficient, Report of the Business Council for Sustainable Development. BCSD, Geneva, Switzerland.

    Google Scholar 

  • Becker, W., Lutz, S., Back, C. (2011): Gabler Kompaktlexikon Modernes Rechnungswesen. Gabler Verlag, Wiesbaden, Germany.

    Google Scholar 

  • Bellgran, M., Säfsten, K. (2010): Production Development. Design and Operation of Production Systems. Springer Verlag, London, UK.

    Google Scholar 

  • BGIA (Berufsgenossenschaftliches Institut für Arbeitsschutz) (Eds.) (2006): Absaugen und Abscheiden von Kühlschmierstoffemissionen. Hauptverband der gewerblichen Berufsgenossenschaften (HVBG), Sankt Augustin, Germany.

    Google Scholar 

  • Böge, A. (2007): Formeln und Tabellen Maschinenbau. Vieweg Verlag, Wiesbaden, Germany.

    Google Scholar 

  • Brinksmeier, E., Aurich. J.C., Govekar. E., Heinzel. C., Hoffmeister. H.-W., Peters. J., Rentsch. R., Stephenson. D.J., Uhlmann. E., Weinert. K., Wittmann. M. (2006): Advances in Modeling and Simulation of Grinding Processes. CIRP Annals - Manufacturing Technology, 55/2:311–317.

    Google Scholar 

  • Brinksmeier, E., Heinzel, C., Wittmann, M. (1999): Friction, Cooling and Lubrication in Grinding. CIRP Annals - Manufacturing Technology, 48/2:581-598.

    Google Scholar 

  • Brinksmeier, E., Schneider, C. (1993): Bausteine für umweltverträgliche Fertigungsprozesse. Hohe Prozesssicherheit, Hohe Leistung, Hohe Präzision, In: Tagungsband zum 7. Int. Braunschweiger Feinbearbeitungskolloquium, Hrsg.: Westkamper, E., Vulkan Verlag, Essen, Germany.

    Google Scholar 

  • Brundtland Commission (1987): Our Common Future. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Carslaw, H., Jaeger, J. C. (2004): Conduction of heat in solids. Oxford Clarendon Press, Oxford, UK.

    Google Scholar 

  • Challen, J.M., Oxley, P.L.B. (1979): An explanation of the different regimes of friction and wear using asperity deformation models. Wear, 53/2:229–243.

    Google Scholar 

  • Chen, X. (1995): Strategy for the selection of grinding wheel dressing conditions. Ph.D Thesis, John Moores University, Liverpool, UK.

    Google Scholar 

  • Chen, X., Rowe, W.B. (1996): Analysis and simulation of the grinding process. Part II: Mechanics of grinding. International Journal of Machine Tools and Manufacture, 36/8:883–896.

    Google Scholar 

  • Coelli, T., Rao, D.S.P., O’Donnell, C.J. (2005): An Introduction to Efficiency and Productivity Analysis. Springer Science+Business Media, New York, USA.

    Google Scholar 

  • Comley, P. (2005): Grinding processes and their effects on surface integrity. Ph.D Thesis, Cranfield University, Cranfield, UK.

    Google Scholar 

  • Daraio, C., Simar, L. (2007): Advanced Robust and Nonparametric Methods in Efficiency Analysis - Methodology and Applications. Springer Science+Business Media, New York, USA.

    Google Scholar 

  • Davis, J.R. (1995): ASM Specialty Handbook Tool Materials. ASM International, Ohio, USA.

    Google Scholar 

  • De Vathaire, M., Delamare, F., Felder, E. (1981): An upper bound model of ploughing by a pyramidal indenter. Wear, 66/1:55–64.

    Google Scholar 

  • Dettmer, T. (2006): Nichtwassermischbare Kühlschmierstoffe auf Basis nachwachsender Rohstoffe. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Vulkan Verlag, Essen, Germany.

    Google Scholar 

  • DGUV (Deutsche Gesetzliche Unfallversicherung e.V.) (Eds.) (2012): Brand- und Explosionsschutz an Werkzeugmaschinen. BGI/GUV-I 719, Berlin, Germany.

    Google Scholar 

  • DIN 25424-1 (1990): Fehlerbaumanalyse. Methode und Bildzeichen. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN 51385 (2013): Schmierstoffe - Bearbeitungsmedien für die Umformung und Zerspanung von Werkstoffen - Begriffe. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN 69651 (1981): Werkzeugmaschinen: Werkzeugmaschinen für die Metallbearbeitung - Begriffe. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN 8589-0 (2003): Fertigungsverfahren Spanen. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN 60300-3-3 (2014): Zuverlässigkeitsmanagement –Teil 3-3: Anwendungsleitfaden – Lebenszykluskosten (IEC 60300-3-3:2004). Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN ISO 14040 (2009): Umweltmanagement - Ökobilanz - Grundsätze und Rahmenbedingungen (ISO 14040:2006). Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN ISO 14045 (2012): Umweltmanagement - Ökoeffizienzbewertung von Produktsystemen - Prinzipien, Anforderungen und Leitlinien (ISO 14045:2012). Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN ISO 14051 (2011): Umweltmanagement - Materialflusskostenrechnung - Allgemeine Rahmenbedingungen. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • Eckebrecht, J. (2000): Umweltverträgliche Gestaltung von spanenden Fertigungsprozessen. Dr.-Ing. Dissertation, Universität Bremen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • EEA (European Environment Agency) (1999): Making sustainability accountable: Eco-efficiency, resource producing and innovation. Topic Report No. 11, Copenhagen, Denmark.

    Google Scholar 

  • Ehrenfeld, J.R. (2005): Eco-efficiency - Philosophy, Theory, and Tools. Journal of Industrial Ecology, 9/4:6–8.

    Google Scholar 

  • Ehrlich, P.R., Holdren, J.P. (1972): A Bulletin Dialog on “The Closing Circle” Critique. Bulletin of the Atomic Scientists, 28/5:16–27.

    Google Scholar 

  • Enparantza, R., Revilla, O., Azkarate, A., Zendoia, J. (2006): A Life Cycle Cost Calculation and Management System of Machine Tools. The 13th CIRP International Conference on Life Cycle Engineering, Katholieke Universiteit Leuven, Belgium, May 31 - June 2, 717–722.

    Google Scholar 

  • Field, M., Koster, W. (1978): Optimizing grinding parameters to combine high productivity with high surface integrity. CIRP Annals - Manufacturing Technology, 27/1:523-526.

    Google Scholar 

  • Fried, H.O., Lovell, C.A., Schmidt, S.S. (2008): The Measurement of Productive Efficiency and Productivity Growth. Oxford University Press, New York, USA.

    Google Scholar 

  • Garcia, E., Pombo, I., Sanchez, J.A., Ortega, N., Izquierdo, B., Plaza, S., Marquinez, J.I., Heinzel, C., Mourek, D. (2013): Reduction of oil and gas consumption in grinding technology using high pour-point lubricants. Journal of Cleaner Production, 51:99–108.

    Google Scholar 

  • Gilormini, P., Felder, E. (1983): Theoretical and experimental study of the plowing of a rigid-plastic semi-infinite body by a rigid pyramidal indenter. Wear, 88/2:195–206.

    Google Scholar 

  • Granta Design Limited (2010): CES Edupack 2010. Version 6.2.0, Cambridge, UK.

    Google Scholar 

  • Haase, M. (2012): Entwicklung eines Energie- und Stoffstrommodells zur ökonomischen und ökologischen Bewertung der Herstellung chemischer Grundstoffe aus Lignocellulose. Dr. rer.pol. Dissertation KIT, Karlsruhe, Germany.

    Google Scholar 

  • Hadeler, T., Winter, E., Arentzen, U. (Ed.) (2000): Gabler Wirtschaftslexikon. Die ganze Welt der Wirtschaft: Betriebswirtschaft, Volkswirtschaft, Recht und Steuern. Gabler Verlag, Wiesbaden, Germany.

    Google Scholar 

  • Hamdi, H., Zahouani, H., Bergheau, J.-M. (2004): Residual stresses computation in a grinding process. Journal of Materials Processing Technology, 147:277–285.

    Google Scholar 

  • Hansen, A., Hallmann, C., Schmehl, M. (2005): Produktökobilanz nichtwassermischbarer Kühlschmierstoffe auf Basis von Mineralöl, pflanzlichen Ölen sowie Altspeisefetten und technischen tierischen Fetten. DBU Abschlussbericht AZ 19122, Braunschweig, Germany.

    Google Scholar 

  • Herrmann, C. (2010): Ganzheitliches Life Cycle Management - Nachhaltigkeit und Lebenszyklusorientierung in Unternehmen. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Hipler, F., Gil Girol, S., Fischer, R.A., Wäll, C. (2000): Chemie gegen Reibung und Verschleiß: Untersuchung molekularer Wirkungsmechanismen von Schmierstoffadditiven. Materialwissenschaft und Werkstofftechnik, 31:872–877.

    Google Scholar 

  • Hou, Z. B., Komanduri, R. (2003): On the mechanics of the grinding process - Part I. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture, 43/15:1579-1593.

    Google Scholar 

  • Inasaki, I., Karpuschewski, B., Lee, H.-S. (2001): Grinding Chatter - Origin and Suppression. CIRP Annals - Manufacturing Technology, 50/2:515–534.

    Google Scholar 

  • Isermann, R. (1974): Identifikation und Parameterschätzung dynamischer Prozesse. VDI-Z, 116/14:1147–1152.

    Google Scholar 

  • Jaeger, J.C. (1942): Moving Sources of Heat and the Temperature at Sliding Contacts. Proceedings, Royal Society, New South Wales, 76/3:203–224.

    Google Scholar 

  • Jollandy, N. A. (2003): An ecological economics of eco-efficiency - theory, interpretations and applications. PhD thesis, Massey University, Palmerston North, New Zealand.

    Google Scholar 

  • Kirsch, B., Effgen, C., Büchel, M., Aurich, J.C. (2014): Comparison of the embodied energy of a grinding wheel and an end mill. Procedia CIRP, 15:74–79.

    Google Scholar 

  • Klocke, K. (2009): Manufacturing processes 2 - Grinding, honing, lapping. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Knop, M. (1989): Rechnergeführte Stellgrößenwahl beim Außenrundeinstechschleifen - Abrichtereinfluß und Temperaturberechnung. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Koskela, M., Vehmas, J. (2012): Defining Eco-efficiency: A Case Study on the Finnish Forest Industry. Business Strategy and the Environment, 21:546–566.

    Google Scholar 

  • Langemeyer, A. (2002): Entwicklung und Bewertung von kühlschmierstofffreien Schleifsystemen beim Flachprofilschleifen. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Vulkan Verlag, Essen, Germany.

    Google Scholar 

  • Lavine, A.S. (2000): An exact solution for surface temperature in down grinding. International Journal of Heat and Mass Transfer, 43:4447–4456.

    Google Scholar 

  • Leber, M. (1995): Entwicklung einer Methode zur restriktionsgerechten Produktgestaltung auf der Basis von Ressourcenverbräuchen. Dr.-Ing. Dissertation, RWTH Aachen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Liedtke, C., Buhl, J., Ameli, N. (2013): Microfoundations for Sustainable Growth with Eco-Intelligent Product Service-Arrangements. Sustainability, 5:1141–1160.

    Google Scholar 

  • Linke, B., Overcash, M. (2012): Life Cycle Analysis of Grinding. Proceedings of the 19th CIRP Conference on Life Cycle Engineering, University of California at Berkeley, Berkeley, USA, May 23-25, 293–298.

    Google Scholar 

  • Linke, B.S., Dornfeld, D.A. (2012): Application of axiomatic design principles to identify more sustainable strategies for grinding. Journal of Manufacturing Systems, 31:412–419.

    Google Scholar 

  • Mahdi, M., Zhang, L. (1998): Applied mechanics in grinding - VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. International Journal of Machine Tools and Manufacture, 38/10-11:1289–1304.

    Google Scholar 

  • Malkin, S., Guo, C. (2008): Grinding Technology: Theory and Applications of Machining with Abrasives. Industrial Press, New York, USA.

    Google Scholar 

  • Mang, T., Dresel, W. (2007): Lubricants and Lubrication. WILEY-VCH Verlag, Weinheim, Germany.

    Google Scholar 

  • Marinescu, I.D., Hitchiner, M., Uhlmann, E., Rowe, W.B., Inasaki, I. (2007): Handbook of machining with grinding wheels. CRC Press, Taylor & Francis Group, Florida, USA.

    Google Scholar 

  • Mateika, M. (2005): Unterstützung der lebenszyklusorientierten Produktplanung am Beispiel des Maschinen- und Anlagenbaus. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Vulkan Verlag, Essen, Germany.

    Google Scholar 

  • McClarence, E. (2010): Report - Trends for cubic boron nitride. The Abrasives Hub.

    Google Scholar 

  • Meadows, D.H., Meadows, D.L., Randers, J., Behrens III, W.W. (1972): The limits to growth. Universe Books, New York, USA.

    Google Scholar 

  • Meng, H.-C. (1994): Wear Modeling, Evaluation and categorization of wear models. Ph.D Thesis, University of Michigan, Ann Arbor, USA.

    Google Scholar 

  • Messer, J. (1983): Abrichten konventioneller Schleifscheben mit stehenden Werkzeugen. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Mickwitz, P., Melanen, M., Rosenström, U., Seppälä, J. (2005): Regional eco-efficiency indicators - a participatory approach. Journal of Cleaner Production, 14:1603–1611.

    Google Scholar 

  • Möller U.J., Nassar J. (2002): Schmierstoffe im Betrieb. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Möller, A. (2000): Grundlagen stoffstrombasierter betrieblicher Umweltinformationssysteme. Dr. rer.nat. Dissertation, Univeristät Hamburg, Projekt Verlag, Bochum, Germany.

    Google Scholar 

  • Moulik, P.N., Yang, H.T.Y., Chandrasekar, S. (2001): Simulation of thermal stresses due to grinding. International Journal of Mechanical Sciences, 43:831–851.

    Google Scholar 

  • Murray, V.R., Zhao, F., Sutherland, J.W. (2012): Life cycle analysis of grinding: a case study of non-cylindrical computer numerical control grinding via a unit-process life cycle inventory approach. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226/10:1604–1611.

    Google Scholar 

  • Nguyen, T.A., Butler, D.L. (2005): Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece. International Journal of Machine Tools and Manufacture, 45/11:1329–1336.

    Google Scholar 

  • OECD (Organization for Economic Co-operation and Development) (1998): Eco-efficiency, Paris, France.

    Google Scholar 

  • Rabiey, M. (2010): Dry Grinding with cBN Wheels - The effect of structuring. Dr.-Ing. Dissertation, Universität Stuttgart, Jost-Jetter Verlag, Stuttgart, Germany.

    Google Scholar 

  • Ropohl, G. (2009): Allgemeine Technologie - Eine Systemtheorie der Technik. Universitätsverlag Karlsruhe, Karlsruhe, Germany.

    Google Scholar 

  • Rowe, W.B. (2009): Principles of modern grinding technology. William Andrew, Elsevier, Oxford, UK.

    Google Scholar 

  • Rüdenauer, I., Gensch, C.-O., Grießhammer, R., Bunke, D. (2005): Integrated Environmental and Economic Assessment of Products and Processes - A Method for Eco-Efficiency Analysis. Journal of Industrial Ecology, 9/4:105–116.

    Google Scholar 

  • Saling, P., Kicherer, A., Dittrich-Kraemer, B., Wittlinger, R., Zombik, W., Schmidt, I., Schrott, W., Schmidt, S. (2002): Eco-efficiency Analysis by BASF: The Method. The International Journal of Life Cycle Assessment, 7/4:203–218.

    Google Scholar 

  • Saljé, E. (1991): Begriffe der Schleif- und Konditioniertechnik. Vulkan Verlag, Essen, Germany.

    Google Scholar 

  • Saljé, E., Möhlen, H. (1986): Fundamental Dependecies upon Lenghts and Results in Grinding. CIRP Annals - Manufacturing Technology, 35/1:249–253.

    Google Scholar 

  • Schaltegger, S. (1999): Öko-Effizienz als Element des sozio-ökonomisch vernünftigen Umweltmanagements. Ökologisches Wirtschaften, 3:12–14.

    Google Scholar 

  • Schaltegger, S., Sturm, A. (1989): Ökologieinduzierte Entscheidungsprobleme des Managements: Ansatzpunkte zur Ausgestaltung von Instrumenten. WWZ-Discussion Paper No. 8914.

    Google Scholar 

  • Schaltegger, S., Sturm, A. (2000): Ökologieorientierte Entscheidungen in Unternehmen. Paul Haupt, Bern, Switzerland.

    Google Scholar 

  • Schischke, K., Hohwieler, E., Feitscher, R., König, J., Kreuschner, S., Wilpert, P., Nissen, N.F. (2012a): Energy-Using Product Group Analysis - Lot 5, Machine tools and related machinery, Executive Summary – Final Version, Berlin, Germany.

    Google Scholar 

  • Schischke, K., Hohwieler, E., Feitscher, R., König, J., Kreuschner, S., Wilpert, P., Nissen, N.F. (2012b): Energy-Using Product Group Analysis - Lot 5, Machine tools and related machinery, Task 1 Report – Definition, Berlin, Germany.

    Google Scholar 

  • Schischke, K., Hohwieler, E., Feitscher, R., König, J., Kreuschner, S., Wilpert, P., Nissen, N.F. (2012c): Energy-Using Product Group Analysis - Lot 5, Machine tools and related machinery, Task 2 Report – Economic and Market Analysis, Berlin, Germany.

    Google Scholar 

  • Schlosser, R. (2013): Methodik zur Prognose der Nachhaltigkeit des Energie- und Stoffeinsatzes spanender Fertigungsprozesse. Dr.-Ing. Dissertation, RWTH Aachen, Shaker Verlag, Aachen, Germany.

    Google Scholar 

  • Schmidheiny, S. (1992): Changing course: A global business perspective on development and the environment. MIT Press, Cambridge, USA.

    Google Scholar 

  • Schmidt, M. (2011): Materialflusskostenrechnung. RKW Rationalisierungs- und Innovationszentrum der Deutschen Wirtschaft e.V. Kompetenzzentrum, Faktenblatt: 2/2011.

    Google Scholar 

  • Schmitt, R. (1968): Abrichten von Schleifscheiben mit diamantbestückten Rollen. Dr.-Ing. Dissertation, Technische Universität Braunschweig, Braunschweig, Germany.

    Google Scholar 

  • Schulz, J., Holweger, W. (2010): Wechselwirkung von Additiven mit Metalloberflächen. Expert Verlag, Renningen, Germany.

    Google Scholar 

  • Senti, R. (1994): Produktlebenszyklusorientiertes Kosten- und Erlösmanagement. Dr. oec. HSG Dissertation, Universität St. Gallen, Difo-Druck, Bamberg, Germany.

    Google Scholar 

  • Silliman, J.D. (Ed.) (1992): Cutting and grinding fluids: Selection and application. Society of Manufacturing Engineers, Dearborn, USA.

    Google Scholar 

  • Stachowiak, H. (1973): Allgemeine Modelltheorie. Springer Verlag, Wien, Austria.

    Google Scholar 

  • Steen, B., Carlson, R., Lyrstedt, F., Skantze, G. (2009): Sustainability management of businesses through eco-efficiency - an example. CPM Report, 2009:3.

    Google Scholar 

  • Stratmann, J. (2001): Bedarfsgerechte Informationsversorgung im Rahmen eines produktlebenszyklusorientierten Controlling. Dr.-Ing. Dissertation, Technische Universität Berlin, Josef Eul Verlag, Köln, Germany.

    Google Scholar 

  • Sutherland, K. (2008): Filters and filtration handbook. Butterworth-Heinemann, Oxford, UK.

    Google Scholar 

  • Tönshoff, H.K. (1995): Werkzeugmaschinen: Grundlagen. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Tönshoff, H.K., Peters, J., Inasaki, I., Paul, T. (1992): Modelling and Simulation of Grinding Processes. CIRP Annals - Manufacturing Technology, 41/2:677–688.

    Google Scholar 

  • Torrance, A.A., Badger, J.A. (2000): The relation between the traverse dressing of vitrified grinding wheels and their performance. International Journal of Machine Tools and Manufacture, 40/12:1787–1811.

    Google Scholar 

  • UN (United Nations) (Ed.) (1992): Earth Summit. Agenda 21. The United Nations Programme of Action from Rio. The final text of agreements negotiated by Governments at the United Nations Conference on Environment and Development (UNCED).

    Google Scholar 

  • USGS (U.S. Geological Survey) (2014): Mineral commodity summaries 2014. U.S. Geological Survey, Reston, USA.

    Google Scholar 

  • Vansevenant, E. (1987): A Subsurface Integrity Model in Grinding. Dr.-Ing. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium.

    Google Scholar 

  • VDI 2243 (2002): Recyclingorientierte Produktentwicklung. VDI-Handbuch Konstruktion, VDI-Handbuch Umwelttechnik, Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • VDI 2884 (2005): Beschaffung, Betrieb und Instandhaltung von Produktionsmitteln unter Anwendung von Life Cycle Costing (LCC). VDI-Handbuch Betriebstechnik, Teil 4, Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • VDI 3397-1 (2007): Kühlschmierstoffe für spanende und umformende Fertigungsverfahren - Blatt 1. VDI-Handbuch Betriebstechnik, Teil 4, Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • VDI 3397-2 (2007): Kühlschmierstoffe für spanende und umformende Fertigungsverfahren - Blatt 2. VDI-Handbuch Betriebstechnik, Teil 4, Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • VDMA 34160 (2006): Prognosemodell für die Lebenszykluskosten von Maschinen und Anlagen. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • Velten, K. (2009): Mathematical modeling and simulation - introduction for scientists and engineers. WILEY-VCH Verlag, Weinheim, Germany.

    Google Scholar 

  • Viere, T., Prox., M., Möller, M., Schmidt, M. (2011): Implications of material flow cost accounting for life cycle engineering. Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, May 2-4, 652–656.

    Google Scholar 

  • Vits, R. (1985): Technologische Aspekte der Kühlschmierung beim Schleifen. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Weck, M., Brecher, C. (2005): Werkzeugmaschinen - Maschinenarten und Anwendungsbereiche. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Wegener, K., Hoffmeister, H.-W., Karpuschewski, B., Kuster, F., Hahmann, W.C., Rabiey, M. (2011): Conditioning and monitoring of grinding wheels. CIRP Annals - Manufacturing Technology, 60/2:757–777.

    Google Scholar 

  • Werner, G. (1971): Kinematik und Mechanik des Schleifprozesses. Dr.-Ing. Dissertation, RWTH Aachen, Aachen, Germany.

    Google Scholar 

  • Winter, M., Ibbotson, S, Kara, S., Herrmann, C. (2015): Life cycle assessment of cubic boron nitride grinding wheels. Journal of Cleaner Production, 107:707–721.

    Google Scholar 

  • Winter, M., Li, W., Kara, S., Herrmann, C. (2014): Determining optimal process parameters to increase the eco-efficiency of grinding processes. Journal of Cleaner Production, 66:644–645.

    Google Scholar 

  • Xie, Y., Williams, J.A. (1996): The prediction of friction and wear when a soft surface slides against a harder rough surface. Wear, 196/1-2:21–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Winter .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Winter, M. (2016). Grinding, Modelling and Eco-efficiency. In: Eco-efficiency of Grinding Processes and Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-25205-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25205-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25203-2

  • Online ISBN: 978-3-319-25205-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics