Advertisement

Introduction

  • Alexander H.-D. Cheng
Chapter
Part of the Theory and Applications of Transport in Porous Media book series (TATP, volume 27)

Abstract

In Codex Leicester (da Vinci L, Codex leicester, 1506–1510), da Vinci (see Sect. F.1 for a biography) drew the analogy between the Earth and the human body, to argue that Earth too, is a living body. He compared soils, rocks, and tufa (volcanic rock composed of fused detritus) to flesh, bones, cartilages, heart, arteries, and veins. We may ask, what do these materials have in common? They are all porous materials, that is, solid materials containing void space (pores) in them. Particularly, the pores can be occupied by a fluid, such be water, air, oil, methane gas, blood, body fluid, or a mixture of these.This book is dedicated to the study of mechanics of porous materials, especially those infiltrated by a fluid. Porous materials can be found in nature as inanimate objects such as sand, soil, and rock, as living bodies such as plant tissue and animal and human flesh and bones, or as man-made materials for various industry or biomedical applications. These materials can look much different in their appearances due to their origin, but the underlying physical principles governing their mechanical behaviors can be the same. We are interested in the static and dynamic responses of these materials subject to mechanical as well as other type of forces, such as those of thermal and chemical origin. These studies are generally known as poromechanics (The term “poromechanics” was first created for the Biot Conference on Poromechanics (Thimus et al (eds), Poromechanics–a tribute to Maurice A. Biot. Balkema, Rotterdam/Brookfield, 648pp, 1998)). The modeling of a full range of porous material responses, ranging from quasi-static to dynamic, from linear to nonlinear, and from partial uncoupling to full coupling, can be complex and unwieldy. The goal of this book is limited. It focuses largely on the linear theories, known as poroelasticity (The term “poroelasticity” was first used by Deresiewicz and Skalak (Deresiewicz and Skalak, Bull Seismol Soc Am 53(4):783–788, 1963)), as in the linear theory of elasticity and Darcy flow; hence the book is of an introductory nature.

Keywords

Pore Pressure Effective Stress Bulk Modulus Hydraulic Fracture Borehole Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abousleiman Y, Cheng AHD, Jiang C, Roegiers JC (1993) A micromechanically consistent poroviscoelasticity theory for rock mechanics applications. Int J Rock Mech Mining Sci 30(7):1177–1180CrossRefGoogle Scholar
  2. 2.
    Abousleiman Y, Cheng AHD, Jiang C, Roegiers JC (1996) Poroviscoelastic analysis of borehole and cylinder problems. Acta Mech 119(1–4):199–219zbMATHCrossRefGoogle Scholar
  3. 3.
    Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):568–581CrossRefGoogle Scholar
  4. 4.
    Alkhateb H, Al-Ostaz A, Cheng AHD, Li XB (2013) Materials genome for graphene-cement nanocomposites. J Nanomech Micromech ASCE 3(3):67–77CrossRefGoogle Scholar
  5. 5.
    Argoubi M, Shirazi-Adl A (1996) Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 29(10):1331–1339CrossRefGoogle Scholar
  6. 6.
    Atkinson C (1986) Steady pore pressure profiles associated with a moving trench. Int J Eng Sci 24(10):1681–1695zbMATHCrossRefGoogle Scholar
  7. 7.
    Atkinson TS, Haut RC, Altiero NJ (1997) A poroelastic model that predicts some phenomenological responses of ligaments and tendons. J Biomech Eng ASME 119(4):400–405CrossRefGoogle Scholar
  8. 8.
    Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46(6):559–632CrossRefGoogle Scholar
  9. 9.
    Barksdale HC, Sundstrom RW, Brunstein MS (1936) Supplementary report on the groundwater supplies of the Atlantic City region. New Jersey State Water Policy Commission Special Report 6, 139ppGoogle Scholar
  10. 10.
    Bažant ZP, Thonguthai W (1979) Pore pressure in heated concrete walls–theoretical prediction. Mag Concr Res 31(107):67–76CrossRefGoogle Scholar
  11. 11.
    Bea RG, Wright SG, Sircar P, Niedoroda AW (1983) Wave-induced slides in south pass block 70, Mississippi Delta. J Geotech Eng ASCE 109(4):619–644CrossRefGoogle Scholar
  12. 12.
    Beamish BB, Crosdale PJ (1998) Instantaneous outbursts in underground coal mines: an overview and association with coal type. Int J Coal Geol 35(1–4):27–55CrossRefGoogle Scholar
  13. 13.
    Bear J, Cheng AHD (2010) Modeling groundwater flow and contaminant transport. Springer, Dordrecht/London, 834ppzbMATHCrossRefGoogle Scholar
  14. 14.
    Bennett RH, Faris JR (1979) Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi Delta. Appl Ocean Res 1(3):115–123CrossRefGoogle Scholar
  15. 15.
    Berchenko I, Detournay E (1997) Deviation of hydraulic fractures through poroelastic stress changes induced by fluid injection and pumping. Int J Rock Mech Mining Sci 34(6):1009–1019CrossRefGoogle Scholar
  16. 16.
    Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164zbMATHCrossRefGoogle Scholar
  17. 17.
    Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low-frequency range. J Acoust Soc Am 28(2):168–178MathSciNetCrossRefGoogle Scholar
  19. 19.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. 2. Higher frequency range. J Acoust Soc Am 28(2):179–191MathSciNetCrossRefGoogle Scholar
  20. 20.
    Biot MA (1959) New thermomechanical reciprocity relations with application to thermal stress analysis. J Aerosp Sci 26(7):401–408MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Biot MA (1963) Science and the engineer. Appl Mech Rev 16(2):89–90Google Scholar
  23. 23.
    Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech ASME 24:594–601MathSciNetGoogle Scholar
  24. 24.
    Blanton TL (1983) The relation between recovery deformation and in-situ stress magnitudes. In: SPE/DOE low permeability gas reservoirs symposium, DenverCrossRefGoogle Scholar
  25. 25.
    Blau LW, Statham L (1936) Method and apparatus for seismicelectric prospecting. U.S. Patent 2054067Google Scholar
  26. 26.
    Bluhm J, de Boer R (1996) Effective stresses—a clarification. Arch Appl Mech 66(7):479–492zbMATHGoogle Scholar
  27. 27.
    Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New York, 586ppzbMATHGoogle Scholar
  28. 28.
    Booker JR (1974) Time dependent strain following faulting of a porous medium. J Geophys Res 79(14):2037–2044CrossRefGoogle Scholar
  29. 29.
    Bredehoeft JD (1967) Response of well-aquifer systems to Earth tides. J Geophys Res 72(12):3075–3087CrossRefGoogle Scholar
  30. 30.
    Brereton NR, Chroston PN, Evans CJ (1995) Pore pressure as an explanation of complex anelastic strain recovery results. Rock Mech Rock Eng 28(1):59–66CrossRefGoogle Scholar
  31. 31.
    Brereton NR, Chroston PN, Evans CJ, Hudson JA, Whitmarsh RB (1992) Anelastic strain recovery and elastic properties of oceanic basaltic rocks. In: Gradstein FM, Ludden JN et al (eds) Proceedings of the ocean drilling program. Scientific results, vol 123. Ocean Drilling Program, College Station, pp 469–491Google Scholar
  32. 32.
    Bridgman PW (1912) Breaking tests under hydrostatic pressure and conditions of rupture. Philos Mag 24(139):63–80CrossRefGoogle Scholar
  33. 33.
    Brown DW (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings of the 25th workshop on geothermal reservoir engineering, SGP-TR-165, Stanford University, StanfordGoogle Scholar
  34. 34.
    Bruno MS, Nakagawa FM (1991) Pore pressure influence on tensile fracture propagation in sedimentary rock. Int J Rock Mech Mining Sci 28(4):261–273CrossRefGoogle Scholar
  35. 35.
    Burke M, Kingsbury HB (1984) Response of poroelastic layers to moving loads. Int J Solids Struct 20(5):499–511zbMATHCrossRefGoogle Scholar
  36. 36.
    Carder DS (1945) Seismic investigations in the Boulder Dam area, 1940–1944, and the influence of reservoir loading on earthquake activity. Bull Seismol Soc Am 35:175–192Google Scholar
  37. 37.
    Chan DYC, Hughes BD, Paterson L (1993) Transient gas flow around boreholes. Trans Porous Media 10(2):137–152zbMATHCrossRefGoogle Scholar
  38. 38.
    Chan DYC, Hughes BD, Paterson L (1993) Tensile stresses around boreholes due to transient fluid flow. Int J Numer Anal Methods Geomech 17(9):659–667zbMATHCrossRefGoogle Scholar
  39. 39.
    Chapelle D, Gerbeau JF, Sainte-Marie J, Vignon-Clementel IE (2010) A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech 46(1):91–101MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Cheng AHD (1986) Effect of sediment on earthquake-induced reservoir hydrodynamic response. J Eng Mech ASCE 112(7):654–665CrossRefGoogle Scholar
  41. 41.
    Cheng AHD (2000) Multilayered aquifer systems—fundamentals and applications. Marcel Dekker, New York/Basel, 384ppGoogle Scholar
  42. 42.
    Cheng AHD, Abousleiman Y, Roegiers JC (1993) Review of some poroelastic effects in rock mechanics. Int J Rock Mech Mining Sci 30(7):1119–1126CrossRefGoogle Scholar
  43. 43.
    Cheng AHD, Badmus T, Beskos DE (1991) Integral equation for dynamic poroelasticity in frequency domain with BEM solution. J Eng Mech ASCE 117(5):1136–1157CrossRefGoogle Scholar
  44. 44.
    Cheng AHD, Liggett JA (1984) Boundary integral equation method for linear porous-elasticity with applications to fracture propagation. Int J Numer Methods Eng 20(2):279–296zbMATHCrossRefGoogle Scholar
  45. 45.
    Cheng AHD, Liu PLF (1986) Seepage force on a pipeline buried in a poroelastic seabed under wave loadings. Appl Ocean Res 8(1):22–32CrossRefGoogle Scholar
  46. 46.
    Cheng AHD, Skalak R, Weinbaum S, Ni JCY (1984) Consolidation of poroelastic arterial tissue. In: Boresi AP, Chong KP (eds) Engineering mechanics in civil engineering, proceedings of the 5th ASCE/EMD specialty conference. University of Wyoming, Laramie, pp 891–894Google Scholar
  47. 47.
    Clark JB (1949) A hydraulic process for increasing the productivity of wells. Trans Am Inst Mining Metall Eng 186(1):1–8Google Scholar
  48. 48.
    Cleary MP (1978) Elastic and dynamic response regimes of fluid-impregnated solids with diverse microstructures. Int J Solids Struct 14(10):795–819zbMATHCrossRefGoogle Scholar
  49. 49.
    Cleary MP (1978) Moving singularities in elasto-diffusive solids with applications to fracture propagation. Int J Solids Struct 14(2):81–97MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Cleary MP (1980) Analysis of mechanisms and procedures for producing favourable shapes of hydraulic fractures. In: SPE annual technical conference and exhibition, DallasCrossRefGoogle Scholar
  51. 51.
    Cleary MP (1980) Comprehensive design formulae for hydraulic fracturing. In: SPE annual technical conference and exhibition. DallasCrossRefGoogle Scholar
  52. 52.
    Cocco M, Rice JR (2002) Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J Geophys Res Solid Earth 107(B2):2030CrossRefGoogle Scholar
  53. 53.
    Constantinides G, Ulm FJ (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem Concr Res 34(1):67–80CrossRefGoogle Scholar
  54. 54.
    Cowin SC (1999) Bone poroelasticity. J Biomech 32(3):217–238MathSciNetCrossRefGoogle Scholar
  55. 55.
    Cryer CW (1963) A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Q J Mech Appl Math 16(4):401–412zbMATHCrossRefGoogle Scholar
  56. 56.
    Dally JW, Riley WF (1978) Experimental stress analysis. McGraw-Hill, New York, 571ppGoogle Scholar
  57. 57.
    Dal Pont S, Colina H, Dupas A, Ehrlacher A (2005) An experimental relationship between complete liquid saturation and violent damage in concrete submitted to high temperature. Mag Concr Res 57(8):455–461CrossRefGoogle Scholar
  58. 58.
    Dalrymple RA, Liu PLF (1978) Waves over soft muds: a two-layer fluid model. J Phys Oceanogr 8(6):1121–1131CrossRefGoogle Scholar
  59. 59.
    David EC, Zimmerman RW (2011) Compressibility and shear compliance of spheroidal pores: exact derivation via the Eshelby tensor, and asymptotic expressions in limiting cases. Int J Solids Struct 48(5):680–686zbMATHCrossRefGoogle Scholar
  60. 60.
    Davies GH, Reynolds SJ (1996) Structural geology of rocks and regions, 2nd edn. Wiley, New York, 776ppGoogle Scholar
  61. 61.
    da Vinci L (1506–1510) Codex leicesterGoogle Scholar
  62. 62.
    Davis SD, Pennington WD (1989) Induced seismic deformation in the Cogdell oil-field of West Texas. Bull Seismol Soc Am 79(5):1477–1494Google Scholar
  63. 63.
    de Boer R (2000) Theory of porous media, highlights in the historical development and current state. Springer, Berlin/New York, 618ppzbMATHCrossRefGoogle Scholar
  64. 64.
    de Boer R (2005) The engineer and the scandal: a piece of science history. Springer, Berlin/Heidelberg, 293ppCrossRefGoogle Scholar
  65. 65.
    de Boer R, Ehlers W (1988) A historical review of the formulation of porous media theories. Acta Mech 74(1–4):1–8CrossRefGoogle Scholar
  66. 66.
    de Boer R, Ehlers W (1990) The development of the concept of effective stresses. Acta Mech 83(1–2):77–92MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    de Laguna W (1966) Disposal of radioactive wastes by hydraulic fracturing: part I. General concept and first field experiments. Nucl Eng Design 3(2):338–352CrossRefGoogle Scholar
  68. 68.
    de Laguna W (1966) Disposal of radioactive wastes by hydraulic fracturing: part II. Mechanics of fracture formation and design of observation and monitoring wells. Nucl Eng Design 3(3):432–438CrossRefGoogle Scholar
  69. 69.
    Deresiewicz H, Skalak R (1963) On the uniqueness in dynamic poroelasticity. Bull Seismol Soc Am 53(4):783–788Google Scholar
  70. 70.
    Detournay E, Cheng AHD (1988) Poroelastic response of a borehole in a non-hydrostatic stress field. Int J Rock Mech Mining Sci 25(3):171–182CrossRefGoogle Scholar
  71. 71.
    Detournay E, Cheng AHD (1991) Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium. Int J Solids Struct 27(13):1645–1662zbMATHCrossRefGoogle Scholar
  72. 72.
    Detournay E, Cheng AHD (1992) Influence of pressurization rate on the magnitude of the breakdown pressure. In: Tillerson JR, Wawersik WR (eds) Rock mechanics, proceedings of the 33rd U.S. symposium, Balkema, pp 325–333Google Scholar
  73. 73.
    Detournay E, Cheng AHD, Roegiers JC, McLennan JD (1989) Poroelasticity considerations in in-situ stress determination by hydraulic fracturing. Int J Rock Mech Mining Sci 26(6):507–513CrossRefGoogle Scholar
  74. 74.
    Dey TN, Kranz RL (1988) State of stress and relationship of mechanical properties to hydrothermal alteration at valles caldera core hole 1, New Mexico. J Geophys Res Solid Earth Planets 93(B6):6108–6112CrossRefGoogle Scholar
  75. 75.
    Domenico PA (1983) Determination of bulk rock properties from ground-water level fluctuations. Bull Assoc Eng Geol 83(3):283–287Google Scholar
  76. 76.
    Domínguez J, Gallego R, Japón BR (1997) Effects of porous sediments on seismic response of concrete gravity dams. J Eng Mech ASCE 123(4):302–311CrossRefGoogle Scholar
  77. 77.
    Dreesen DS, Nicholson RW (1985) Well completion and operations for MHF of Fenton Hill well EE-2. Geotherm Resour Counc Trans Part 2 9:105–110Google Scholar
  78. 78.
    Dropek RK, Johnson JN, Walsh JB (1978) Influence of pore pressure on mechanical properties of Kayenta sandstone. J Geophys Res 83(NB6):2817–2824Google Scholar
  79. 79.
    Economides MJ, Nolte KG (eds)(2000) Reservoir stimulation, 3rd edn. Wiley, Chichester/New York, 856ppGoogle Scholar
  80. 80.
    El Rabaa AW, Meadows DL (1986) Laboratory and field application of the strain relaxation method, SPE 15072, SPE 56th California regional meeting, Oakland, pp 259–272Google Scholar
  81. 81.
    Erskine AD (1991) The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 29(4):556–562Google Scholar
  82. 82.
    Fairhurst C (1964) Measurement of in situ rock stresses, with particular reference to hydraulic fracturing. Rock Mech Eng Geol 2:129–147Google Scholar
  83. 83.
    Fam MA, Dusseault MB, Fooks JC (2003) Drilling in mudrocks: rock behavior issues. J Pet Sci Eng 38(3–4):155–166CrossRefGoogle Scholar
  84. 84.
    Ferris JG (1952) Cycle fluctuation of water levels as a basis for determining aquifer transmissibility, Groundwater Note 1, U.S. Geological Survey, Washington, DCGoogle Scholar
  85. 85.
    Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology—the U.S. Department of Energy’s carbon sequestration program. Int J Greenh Gas Control 2(1):9–20CrossRefGoogle Scholar
  86. 86.
    Fillunger P (1936) Erdbaumechanik? (Earthwork Mechanics?). Wien: Selbstverlag des Verfassers (Vienna: self published by author)Google Scholar
  87. 87.
    Foda MA (1982) On the extrication of large objects from the ocean bottom (the breakout phenomenon). J Fluid Mech 117:211–231zbMATHCrossRefGoogle Scholar
  88. 88.
    Fourie F (2006) Aspects of the lateral and vertical resolution of surface electroseismic data with implications for groundwater exploration in fractured Karoo rocks. S Afr J Geol 109(4):571–584MathSciNetCrossRefGoogle Scholar
  89. 89.
    Frank U, Barkley N (1995) Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction. J Hazard Mater 40(2):191–201CrossRefGoogle Scholar
  90. 90.
    Franke PR, Nunz GJ (1985) Recent developments in the hot dry rock geothermal energy program. Geotherm Resour Counc Trans Part 2 9:95–98Google Scholar
  91. 91.
    Freed AM (2005) Earthquake triggering by static, dynamic, and postseismic stress transfer. Ann Rev Earth Planet Sci 33:335–367CrossRefGoogle Scholar
  92. 92.
    Frenkel J (1944) On the theory of seismic and seismoelectric phenomena in moist soil. J Phys USSR 13(4):230–241MathSciNetGoogle Scholar
  93. 93.
    Fung YC (1977) A first course in continuum mechanics, 2nd edn. Prentice-Hall, Englewood Cliffs, 351ppGoogle Scholar
  94. 94.
    Gade HS (1957) Effects of a non-rigid, impermeable bottom on plane surface waves in shallow water. J Marine Res 16:61–82Google Scholar
  95. 95.
    Gambolati G, Teatini P (2014) Venice shall rise again: engineered uplift of Venice through saltwater injection. Elsevier, London/Waltham, 83ppGoogle Scholar
  96. 96.
    Garg SK, Nur A (1973) Effective stress laws for fluid-saturated porous rocks. J Geophys Res 78(26):5911–5921CrossRefGoogle Scholar
  97. 97.
    Gassmann F (1951) Über die elastizität poröser medien (On elasticity of porous media). Veirteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96:1–23MathSciNetzbMATHGoogle Scholar
  98. 98.
    Geertsma J (1957) A remark on the analogy between thermoelasticity and the elasticity of saturated porous media. J Mech Phys Solids 6(1):13–16zbMATHCrossRefGoogle Scholar
  99. 99.
    Gibson RE, Knight K, Taylor PW (1963) A critical experiment to examine theories of three dimensional consolidation. In: Proceedings, European conference on soil mechanics and foundation engineering, vol 1, Weisbaden, pp 69–76Google Scholar
  100. 100.
    Gough DI, Bell JS (1982) Stress orientations from borehole wall fractures with examples from Colorado, east Texas, and northern Canada. Canad J Earth Sci 19(7):1358–1370Google Scholar
  101. 101.
    Grablovitz G (1880) Sul fenomeno di marea osservato nelle miniere di Dun in Bohemia (On the phenomenon of tide observed in the mines of Dun in Bohemia). Bull della Soc Adriat di Sci Nat Trieste 6:24–50Google Scholar
  102. 102.
    Gupta HK (1992) Reservoir-induced earthquakes. Elsevier, Amsterdam/New York, 364ppGoogle Scholar
  103. 103.
    Gupta HK (2002) A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci Rev 58(3–4):279–310CrossRefGoogle Scholar
  104. 104.
    Gutierrez MS, Lewis RW (2002) Coupling of fluid flow and deformation in underground formations. J Eng Mech ASCE 128(7):779–787CrossRefGoogle Scholar
  105. 105.
    Haimson BC (1978) The hydrofracturing stress measuring method and recent field results. Int J Rock Mech Mining Sci 15(4):167–178CrossRefGoogle Scholar
  106. 106.
    Haimson B, Fairhurst C (1967) Initiation and extension of hydraulic fractures in rocks. Soc Pet Eng J 7:310–318CrossRefGoogle Scholar
  107. 107.
    Haimson B, Fairhurst C (1969) Hydraulic fracturing in porous-permeable materials. J Pet Technol 21:811–817CrossRefGoogle Scholar
  108. 108.
    Haimson BC, Rummel F (1982) Hydrofracturing stress measurements in the Iceland research drilling project drill hole at Reydarfjordur, Iceland. J Geophys Res 87(NB8):6631–6649Google Scholar
  109. 109.
    Handin J, Hager RV, Friedman M, Feather JN (1963) Experimental deformation of sedimentary rock under confining pressure: pore pressure effects. AAPG Bull 47:717–755Google Scholar
  110. 110.
    Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36(1):95–100MathSciNetCrossRefGoogle Scholar
  111. 111.
    Hashin Z, Shtrikman S (1961) Note on a variational approach to the theory of composite elastic materials. J Frankl Inst Eng Appl Math 271(4):336–341CrossRefGoogle Scholar
  112. 112.
    Hayashi K, Haimson BC (1991) Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ minimum compressive stress. J Geophys Res 96(B11):18311–18321CrossRefGoogle Scholar
  113. 113.
    Healy JH, Rubey WW, Griggs DT, Raleigh CB (1968) Denver earthquakes. Science 161(3848):1301–1310CrossRefGoogle Scholar
  114. 114.
    Henkel DJ (1970) Role of waves in causing submarine landslides. Géotechnique 20(1):75–80CrossRefGoogle Scholar
  115. 115.
    Hensen EJM, Smit B (2002) Why clays swell. J Phys Chem B 106(49):12664–12667CrossRefGoogle Scholar
  116. 116.
    Howard GC, Fast CR (1970) Hydraulic fracturing. Society of Petroleum Engineers, New York, 203ppGoogle Scholar
  117. 117.
    Howarth RW, Ingraffea A, Engelder T (2011) Natural gas: should fracking stop? Nature 477(7364):271–275CrossRefGoogle Scholar
  118. 118.
    Hsieh PA, Bredehoeft JD (1981) A reservoir analysis of the Denver earthquakes—a case of induced seismicity. J Geophys Res 86(NB2):903–920Google Scholar
  119. 119.
    Hsieh PA, Bredehoeft JD, Farr JM (1987) Determination of aquifer transmissivity from Earth tide analysis. Water Resour Res 23(10):1824–1832CrossRefGoogle Scholar
  120. 120.
    Hsu JRC, Jeng DS, Tsai CP (1993) Short-crested wave-induced soil response in a porous seabed of infinite thickness. Int J Numer Anal Methods Geomech 17(8):553–576zbMATHCrossRefGoogle Scholar
  121. 121.
    Hubbert MK, Rubey WW (1959) Role of fluid pressure in mechanics of overthrust faulting. 1. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol Soc Am Bull 70(2):115–166CrossRefGoogle Scholar
  122. 122.
    Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. Trans Am Inst Mining Eng 210:153–166Google Scholar
  123. 123.
    Ishihara K, Yamazaki A (1984) Analysis of wave-induced liquefaction in seabed deposit of sand. Soil Found 24(3):85–100CrossRefGoogle Scholar
  124. 124.
    Ivanov AG (1939) Effect of electrization of earth layers by elastic waves passing through them. Dokl Akad Nauk SSSR 24(1):42–45Google Scholar
  125. 125.
    Ivanov AG (1940) The electroseismic effect of the second kind. Izv Akad Nauk SSSR Ser Geogr Geofiz 5:699–727Google Scholar
  126. 126.
    Jacob CE (1940) On the flow of water in an elastic artesian unconfined aquifer. Trans Am Geophys Union 21:574–586CrossRefGoogle Scholar
  127. 127.
    Jaeger JC (1963) Extension failures in rocks subject to fluid pressure. J Geophys Res 68(21):6066–6067CrossRefGoogle Scholar
  128. 128.
    Jaeger JC, Cook NGW (1963) Pinching-off and disking of rocks. J Geophys Res 68(6):1759–1765CrossRefGoogle Scholar
  129. 129.
    Jaeger JC, Cook NGW, Zimmerman C (2007) Fundamentals of rock mechanics, 4th edn. Wiley-Blackwell, Malden, 488ppGoogle Scholar
  130. 130.
    Jeng DS (1997) Wave-induced seabed instability in front of a breakwater. Ocean Eng 24(10):887–917CrossRefGoogle Scholar
  131. 131.
    Jeng DS (2001) Numerical modeling for wave-seabed-pipe interaction in a non-homogeneous porous seabed. Soil Dyn Earthq Eng 21(8):699–712MathSciNetCrossRefGoogle Scholar
  132. 132.
    Jeng DS (2001) Mechanism of the wave-induced seabed instability in the vicinity of a breakwater: a review. Ocean Eng 28(5):537–570CrossRefGoogle Scholar
  133. 133.
    Jeng DS, Barry DA, Li L (2001) Water wave-driven seepage in marine sediments. Adv Water Resour 24(1):1–10CrossRefGoogle Scholar
  134. 134.
    Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30(1):101–116MathSciNetCrossRefGoogle Scholar
  135. 135.
    Jiao JJ, Tang Z (1999) An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour Res 35(3):747–751CrossRefGoogle Scholar
  136. 136.
    Jónsson S, Segall P, Pedersen R, Björnsson G (2003) Post-earthquake ground movements correlated to pore-pressure transients. Nature 424(6945):179–183CrossRefGoogle Scholar
  137. 137.
    Jupp TE, Schultz A (2004) A poroelastic model for the tidal modulation of seafloor hydrothermal systems. J Geophys Res Solid Earth 109(B3):B03105CrossRefGoogle Scholar
  138. 138.
    Kalifa P, Menneteau F-D, Quenard D (2000) Spalling and pore pressure in HPC at high temperatures. Cem Concr Res 30(12):1915–1927CrossRefGoogle Scholar
  139. 139.
    Kehle RO (1964) The determination of tectonic stresses through analysis of hydraulic well fracturing. J Geophys Res 69(2):259–273CrossRefGoogle Scholar
  140. 140.
    Kenyon DE (1979) Mathematical model of water flux through aortic tissue. Bull Math Biol 41(1):79–90MathSciNetCrossRefGoogle Scholar
  141. 141.
    Kim JM, Parizek RR (1997) Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system. J Hydrol 202(1–4):231–243CrossRefGoogle Scholar
  142. 142.
    Kim JM, Parizek RR (2005) Numerical simulation of the Rhade effect in layered aquifer systems due to groundwater pumping shutoff. Adv Water Resour 28(6):627–642CrossRefGoogle Scholar
  143. 143.
    King FH (1892) Fluctuations in the level and rate of movement of ground-water on the Wisconsin Agricultural Experiment Station Farm and at Whitewater, Wisconsin. Bulletin No. 5. U.S. Department of Agriculture, Washington, DC, 75ppGoogle Scholar
  144. 144.
    Klonne FW (1880) Die periodischen schwankungen des wasserspiegels in den inundieten kohlenschachten von Dux in der period von 8 April bis 15 September 1879 (The periodic fluctuations of water levels in the flooded coal mine at Dux in the period 8 April to 15 September 1879). Sitzungsberichte Kaiserliche Akademie der Wissenschaften in WienGoogle Scholar
  145. 145.
    Lade PV, de Boer R (1997) The concept of effective stress for soil, concrete and rock. Géotechnique 47(1):61–78CrossRefGoogle Scholar
  146. 146.
    Lambe TW, Whitman RV (1969) Soil mechanics. Wiley, New York, 553ppGoogle Scholar
  147. 147.
    Lamé G (1852) Leçons sur la théorie mathématique de l’élasticité des corps solides (Lectures on the mathematical theory of elasticity of solid bodies). Bachelier, Paris, 335ppGoogle Scholar
  148. 148.
    Langguth HR, Treskatis C (1989) Reverse water level fluctuations in semiconfined aquifer systems – “Rhade effect”. J Hydrol 109(1–2):79–93CrossRefGoogle Scholar
  149. 149.
    Legarth B, Huenges E, Zimmermann G (2005) Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. Int J Rock Mech Mining Sci 42(7–8):1028–1041CrossRefGoogle Scholar
  150. 150.
    Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387CrossRefGoogle Scholar
  151. 151.
    Lin SJ, Jan KM, Weinbaum S, Chien S (1989) Transendothelial transport of low-density lipoprotein in association with cell mitosis in rat aorta. Arterioscler Thromb Vasc Biol 9(2):230–236CrossRefGoogle Scholar
  152. 152.
    Liu PLF (1973) Damping of water waves over porous bed. J Hydraul Div ASCE 99(HY12):2263–2271Google Scholar
  153. 153.
    Logan TL, Mavor MJ, Khodaverdian M (1993) Western cretaceous coal seam project. Q Rev Methane Coal Seam Technol 10(April):6–12Google Scholar
  154. 154.
    Lu GQ, Zhao XS (eds)(2004) Nanoporous materials: science and engineering. Imperial College Press, London, 897ppGoogle Scholar
  155. 155.
    Mackenzie JK (1950) The elastic constants of a solid containing spherical holes. Proc Phys Soc Lond Sect B 63(361):2–11zbMATHCrossRefGoogle Scholar
  156. 156.
    Madsen OS (1978) Wave-induced pore pressures and effective stresses in a porous bed. Géotechnique 28(4):377–393MathSciNetCrossRefGoogle Scholar
  157. 157.
    Magda W (1997) Wave-induced uplift force on a submarine pipeline buried in a compressible seabed. Ocean Eng 24(6):551–576CrossRefGoogle Scholar
  158. 158.
    Mak AFT, Huang LD, Wang QQ (1994) A biphasic poroelastic analysis of the plow dependent subcutaneous tissue pressure and compaction due to epidermal loadings—issues in pressure sore. J Biomech Eng ASME 116(4):421–429CrossRefGoogle Scholar
  159. 159.
    Mallard HH, Dalrymple RA (1977) Water waves propagating over a deformable bottom. In: 9th offshore technology conference, Houston, pp 141–146Google Scholar
  160. 160.
    Mandel J (1953) Consolidation des sols (etude mathematique) (Consolidation of soils (mathematical study)). Géotechnique 3:287–299CrossRefGoogle Scholar
  161. 161.
    Martner S, Sparks N (1959) The electroseismic effect. Geophysics 24(2):297–308CrossRefGoogle Scholar
  162. 162.
    Masoero E, Del Gado E, Pellenq RJM, Yip S, Ulm F-J (2014) Nano-scale mechanics of colloidal C-S-H gels. Soft Matter 10(3):491–499CrossRefGoogle Scholar
  163. 163.
    Mavor MJ, Logan TL (1994) Recent advances in coal gas-well openhole well completion technology. J Pet Technol 46(7):587–593CrossRefGoogle Scholar
  164. 164.
    Mehrabian A, Abousleiman Y (2011) General solutions to poroviscoelastic model of hydrocephalic human brain tissue. J Theor Biol 291:105–118MathSciNetCrossRefGoogle Scholar
  165. 165.
    Mei CC, Foda MA (1981) Wave-induced responses in a fluid-filled poro-elastic solid with a free surface—a boundary layer theory. Geophys J R Astron Soc 66(3):597–631zbMATHCrossRefGoogle Scholar
  166. 166.
    Meinzer OE (1928) Compressibility and elasticity of artisan aquifers. Econ Geol 23:263–291CrossRefGoogle Scholar
  167. 167.
    Melchior PJ (1983) The tides of the planet Earth, 2nd edn. Pergamon, Oxford/New York, 653ppGoogle Scholar
  168. 168.
    Mikhailov OV, Queen J, Toksöz MN (2000) Using borehole electroseismic measurements to detect and characterize fractured (permeable) zones. Geophysics 65(4):1098–1112CrossRefGoogle Scholar
  169. 169.
    Millham NP, Howes BL (1995) A comparison of methods to determine K in a shallow coastal aquifer. Ground Water 33:49–57CrossRefGoogle Scholar
  170. 170.
    Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage—a review. J Biomech 17(5):377–394CrossRefGoogle Scholar
  171. 171.
    Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression—theory and experiments. J Biomech Eng ASME 102(1):73–84CrossRefGoogle Scholar
  172. 172.
    Mu YK, Cheng AHD, Badiey M, Bennett R (1999) Water wave driven seepage in sediment and parameter inversion based on pore pressure data. Int J Numer Anal Methods Geomech 23(13):1655–1674zbMATHCrossRefGoogle Scholar
  173. 173.
    Murdoch LC, Chen J-L (1997) Effects of conductive fractures during in-situ electroosmosis. J Hazard Mater 55(1–3):239–262CrossRefGoogle Scholar
  174. 174.
    Narasimhan TN (2005) Hydrogeology in North America: past and future. Hydrogeol J 13(1):7–24MathSciNetCrossRefGoogle Scholar
  175. 175.
    Nierode DE (1985) Comparison of hydraulic fracture design methods to observed field results. J Pet Technol 37(11): 1831–1839CrossRefGoogle Scholar
  176. 176.
    Norris A (1992) On the correspondence between poroelasticity and thermoelasticity. J Appl Phys 71(3):1138–1141CrossRefGoogle Scholar
  177. 177.
    Nowacki W (1986) Thermoelasticity, 2nd edn. Pergamon, Oxford/New York, 566ppzbMATHGoogle Scholar
  178. 178.
    Nur A, Booker JR (1972) Aftershocks caused by pore fluid flow? Science 175(4024):885–887CrossRefGoogle Scholar
  179. 179.
    Oka M, Noguchi T, Kumar P, Ikeuchi K, Yamamuro T, Hyon SH, Ikada Y (1990) Development of an artificial articular cartilage. Clin Mater 6(4):361–381CrossRefGoogle Scholar
  180. 180.
    Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, Fujita H (2000) Development of artificial articular cartilage. Proc Inst Mech Eng Part H J Eng Med 214(1):59–68CrossRefGoogle Scholar
  181. 181.
    Palmer AC, Rice JR (1973) Growth of slip surfaces in progressive failure of over-consolidated clay. Proc R Soc Lond Ser A Math Phys Eng Sci 332(1591):527–548zbMATHCrossRefGoogle Scholar
  182. 182.
    Paterson L (1986) A model for outbursts in coal. Int J Rock Mech Mining Sci 23(4):327–332MathSciNetCrossRefGoogle Scholar
  183. 183.
    Paul P, Zoback M (2008) Wellbore stability study for the SAFOD borehole through the San Andreas Fault. SPE Drill Complet 23(4):394–408CrossRefGoogle Scholar
  184. 184.
    Pearson C (1981) The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. J Geophys Res 86(B9):7855–7864CrossRefGoogle Scholar
  185. 185.
    Pennington WD, Davis SD, Carlson SM, Dupree J, Ewing TE (1986) The evolution of seismic barriers and asperities caused by the depressuring of fault planes in oil and gas fields of South Texas. Bull Seismol Soc Am 76(4):939–948Google Scholar
  186. 186.
    Phan LT (2008) Pore pressure and explosive spalling in concrete. Mater Struct 41(10):1623–1632CrossRefGoogle Scholar
  187. 187.
    Phillips WS, House LS, Fehler MC (1997) Detailed joint structure in a geothermal reservoir from studies of induced microearthquake clusters. J Geophys Res Solid Earth 102(B6):11745–11763CrossRefGoogle Scholar
  188. 188.
    Pinder, G. F., J. D. Bredehoeft, and H. H. Cooper (1969), Determination of aquifer diffusivity from aquifer response to fluctuations in river stage. Water Resour Res 5(4):850–855CrossRefGoogle Scholar
  189. 189.
    Plumb RA, Cox JW (1987) Stress directions in eastern North America determined to 4.5 km from borehole elongation measurements. J Geophys Res Solid Earth Planets 92(B6):4805–4816CrossRefGoogle Scholar
  190. 190.
    Poland JF (ed)(1984) Guidebook to studies of land subsidence due to ground-water withdrawal. UNESCO, Paris, 305ppGoogle Scholar
  191. 191.
    Polzer S, Gasser T, Markert B, Bursa J, Skacel P (2012) Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. BioMed Eng OnLine 11(1):1–13CrossRefGoogle Scholar
  192. 192.
    Pratt WE, Johnson DW (1926) Local subsidence of the Goose Creek oil field. J Geol 34(7):577–590CrossRefGoogle Scholar
  193. 193.
    Precht E, Huettel M (2004) Rapid wave-driven advective pore water exchange in a permeable coastal sediment. J Sea Res 51(2):93–107CrossRefGoogle Scholar
  194. 194.
    Pride S (1994) Governing equations for the coupled electromagnetics and acoustics of porous media. Phys Rev B 50(21):15678–15696CrossRefGoogle Scholar
  195. 195.
    Putnam JA (1949) Loss of wave energy due to percolation in a permeable sea bottom. Trans Am Geophys Union 30:349–356CrossRefGoogle Scholar
  196. 196.
    Rahman MK, Naseby D, Rahman SS (2000) Borehole collapse analysis incorporating time-dependent pore pressure due to mud penetration in shales. J Pet Sci Eng 28(1–2):13–31CrossRefGoogle Scholar
  197. 197.
    Raman-Nair W, Sabin GCW (1991) Wave-induced failure of poroelastic seabed slopes—a boundary element study. Proc Inst Civil Eng Part 2 Res Theory 91:771–794Google Scholar
  198. 198.
    Rappleye HS (1933) Recent areal subsidence found in releveling. Eng News Rec 110:845Google Scholar
  199. 199.
    Reid RO, Kajuira K (1957) On the damping of gravity waves over a permeable seabed. Trans Am Geophys Union 30:662–666CrossRefGoogle Scholar
  200. 200.
    Rendulic L (1936) Porenziffer und porenwasserdruck in tonen (Void ratio and pore pressure in clays). Der Bauing 17:559–564Google Scholar
  201. 201.
    Revil A, Mahardika H (2013) Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials. Water Resour Res 49(2):744–766CrossRefGoogle Scholar
  202. 202.
    Rice JR, Rudnicki JW (1979) Earthquake precursory effects due to pore fluid stabilization of a weakening fault zone. J Geophys Res 84(NB5):2177–2193Google Scholar
  203. 203.
    Rice JR, Simons DA (1976) Stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials. J Geophys Res 81(29):5322–5334CrossRefGoogle Scholar
  204. 204.
    Robinson TW (1939) Earth-tides shown by fluctuations of water-levels in wells in New Mexico and Iowa. Trans Am Geophys Union 20:656–666CrossRefGoogle Scholar
  205. 205.
    Rodrigues JD (1983) The Noordbergum effect and characterization of aquitards at the Rio-Maior mining project. Ground Water 21(2):200–207CrossRefGoogle Scholar
  206. 206.
    Roeloffs EA (1988) Fault stability changes induced beneath a reservoir with cyclic variations in water level. J Geophys Res Solid Earth Planets 93(B3):2107–2124CrossRefGoogle Scholar
  207. 207.
    Rojstaczer S (1988) Determination of fluid flow properties from the response of water levels in wells to atmospheric loading. Water Resour Res 24(11):1927–1938CrossRefGoogle Scholar
  208. 208.
    Rowe RK (2005) Long-term performance of contaminant barrier systems. Géotechnique 55(9):631–677CrossRefGoogle Scholar
  209. 209.
    Rubey WW, Hubbert MK (1959) Role of fluid pressure in mechanics of overthrust faulting. 2. Overthrust belt in geosynclinal area of Western Wyoming in light of fluid-pressure hypothesis. Geol Soc Am Bull 70(2):167–205CrossRefGoogle Scholar
  210. 210.
    Sakai T, Hatanaka K, Mase H (1992) Wave-induced effective stress in seabed and its momentary liquefaction. J Waterw Port Coast Ocean Eng ASCE 118(2):202–206CrossRefGoogle Scholar
  211. 211.
    Schiffman RL, Chen AT-F, Jordan JC (1969) An analysis of consolidation theories. J Soil Mech Found Div ASCE 95(SM1):285–312Google Scholar
  212. 212.
    Schofield AN (2005) Disturbed soil properties and geotechnical design. Telford, London, 216ppCrossRefGoogle Scholar
  213. 213.
    Schofield AN, Wroth CP (1968) Critical state soil mechanics. McGraw-Hill, New York, 310ppGoogle Scholar
  214. 214.
    Scott PP, Bearden WG, Howard GC (1953) Rock rupture as affected by fluid properties. Trans Am Inst Mining Metall Eng 198:111–124Google Scholar
  215. 215.
    Seed HB, Rahman MS (1978) Wave-induced pore pressure in relation to ocean-floor stability of cohesionless soils. Marine Geotechnol 3(2):123–150CrossRefGoogle Scholar
  216. 216.
    Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17(10):942–946CrossRefGoogle Scholar
  217. 217.
    Segall P, Fitzgerald SD (1998) A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289(1–3):117–128CrossRefGoogle Scholar
  218. 218.
    Segall P, Rice JR (1995) Dilatancy, compaction, and slip instability of a fluid-infiltrated fault. J Geophys Res Solid Earth 100(B11):22155–22171CrossRefGoogle Scholar
  219. 219.
    Setton LA, Zhu WB, Mow VC (1993) The biphasic poroviscoelastic behavior of articular cartilage—role of the surface zone in governing the compressive behavior. J Biomech 26(4–5):581–592CrossRefGoogle Scholar
  220. 220.
    Shapiro SA (2015) Fluid-induced seismicity. Cambridge University Press, Cambridge, 289ppCrossRefGoogle Scholar
  221. 221.
    Siegrist RL, Lowe KS, Murdoch LC, Case TL, Pickering DA (1999) In situ oxidation by fracture emplaced reactive solids. J Environ Eng ASCE 125(5):429–440CrossRefGoogle Scholar
  222. 222.
    Siffert RS, Luo GM, Cowin SC, Kaufman JJ (1996) Dynamic relationships of trabecular bone density, architecture, and strength in a computational model of osteopenia. Bone 18(2):197–206CrossRefGoogle Scholar
  223. 223.
    Simon BR, Wu JSS, Carlton MW, Evans JH, Kazarian LE (1985) Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk. J Biomech Eng ASME 107(4):327–335CrossRefGoogle Scholar
  224. 224.
    Simons DA (1977) Boundary-layer analysis of propagating mode II cracks in porous elastic media. J Mech Phys Solids 25(2):99–115MathSciNetzbMATHCrossRefGoogle Scholar
  225. 225.
    Simpson DW (1976) Seismicity changes associated with reservoir loading. Eng Geol 10(2–4):123–150CrossRefGoogle Scholar
  226. 226.
    Skempton AW (1954) The pore pressure coefficients A and B. Géotechnique 4(4):143–147CrossRefGoogle Scholar
  227. 227.
    Skempton AW (1960) Terzaghi’s discovery of effective stress. In: Bjerrum L, Casagrande A, Peck RB, Skempton AW (eds) From theory to practice in soil mechanics. Wiley, New York, pp 42–53Google Scholar
  228. 228.
    Smith MB (1985) Stimulation design for short, precise hydraulic fractures. Soc Pet Eng J 25(3):371–379CrossRefGoogle Scholar
  229. 229.
    Soltanzadeh H, Hawkes CD (2009) Assessing fault reactivation tendency within and surrounding porous reservoirs during fluid production or injection. Int J Rock Mech Mining Sci 46(1):1–7CrossRefGoogle Scholar
  230. 230.
    Speziale S, Tenti G, Sivaloganathan S (2008) A poroelastic model of transcapillary flow in normal tissue. Microvasc Res 75(2):285–295CrossRefGoogle Scholar
  231. 231.
    Šuklje L (1969) Rheological aspects of soil mechanics. Wiley Interscience, London/New York, 571ppGoogle Scholar
  232. 232.
    Teatini P, Castelletto N, Ferronato M, Gambolati G, Tosi L (2011) A new hydrogeologic model to predict anthropogenic uplift of Venice. Water Resour Res 47:W12507CrossRefGoogle Scholar
  233. 233.
    Tennis PD, Jennings HM (2000) A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem Concr Res 30(6):855–863CrossRefGoogle Scholar
  234. 234.
    Terzaghi K (1923) Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen (A method of calculating the permeability of clay from the history of hydrodynamic stress variation). Sitzungsber d Akad d Wiss Wien Math-Naturwiss Kl Abt IIa 132(3/4):125–138Google Scholar
  235. 235.
    Terzaghi K (1925) Erdbaumechanik auf Bodenphysikalischer Grundlage (Soil Mechanics on Soil Physical Basis). F. Deuticke, Leipzig u. Wien, 399ppGoogle Scholar
  236. 236.
    Terzaghi K (1936) The shearing resistance of saturated soils and the angle between the planes of shear. In: First international conference on soil mechanics, vol 1. Harvard University, Cambridge, pp 54–56Google Scholar
  237. 237.
    Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York, 528ppCrossRefGoogle Scholar
  238. 238.
    Terzaghi K, Peck RB (1948) Soil mechanics in engineering practice. Wiley, New York, 566ppGoogle Scholar
  239. 239.
    Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. Wiley, New York, 592ppGoogle Scholar
  240. 240.
    Teufel LW (1983) Determination of in-situ stress from anelastic strain recovery measurements of oriented core, SPE 11649, SPE/DOE low permeability gas reservoirs symposium, DenverGoogle Scholar
  241. 241.
    Theis CV (1939) Earth tides as shown by fluctuations of water level in artesian wells in New Mexico. International Union of Geodesy and Geophysics, Washington Assembly, 11ppGoogle Scholar
  242. 242.
    Thimus JF, Abousleiman Y, Cheng AHD, Coussy O, Detournay E (eds)(1998) Poromechanics–a tribute to Maurice A. Biot. Balkema, Rotterdam/Brookfield, 648ppGoogle Scholar
  243. 243.
    Thompson A, Gist G (1993) Geophysical applications of electrokinetic conversion. Leading Edge 12(12):1169–1173CrossRefGoogle Scholar
  244. 244.
    Thompson AH, Hornbostel S, Burns J, Murray T, Raschke R, Wride J, McCammon P, Sumner J, Haake G, Bixby M, Ross W, White BS, Zhou M, Peczak P (2007) Field tests of electroseismic hydrocarbon detection. Geophysics 72(1):N1–N9CrossRefGoogle Scholar
  245. 245.
    Thompson R (1936) The seismic electric effect. Geophysics 1(3):327–335CrossRefGoogle Scholar
  246. 246.
    Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York, 567ppzbMATHGoogle Scholar
  247. 247.
    Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York, 535ppGoogle Scholar
  248. 248.
    Ulm FJ, Constantinides G, Heukamp FH (2004) Is concrete a poromechanics material?—a multiscale investigation of poroelastic properties. Mater Struct 37(265):43–58CrossRefGoogle Scholar
  249. 249.
    Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14(4):161–198CrossRefGoogle Scholar
  250. 250.
    Valkó P, Economides MJ (1995) Hydraulic fracture mechanics. Wiley, Chichester, 318ppGoogle Scholar
  251. 251.
    Vandamme M, Ulm FJ (2013) Nanoindentation investigation of creep properties of calcium silicate hydrates. Cem Concr Res 52:38–52CrossRefGoogle Scholar
  252. 252.
    van der Kamp G, Gale JE (1983) Theory of Earth tide and barometric effects in porous formations with compressible grains. Water Resour Res 19(2):538–544CrossRefGoogle Scholar
  253. 253.
    van Eyden WAA, Kuper HW, Santema PW (1963) Some methods used in the geohydrological survey of the south-western deltaic area in the Netherlands. Proc Gen Assem Berkeley IUGG Int Assoc Sci Hydro Publ No 63:528–557Google Scholar
  254. 254.
    van Oort E, Hale AH, Mody FK, Roy S (1996) Transport in shales and the design of improved water-based shale drilling fluids. SPE Drill Complet 11(3):137–146CrossRefGoogle Scholar
  255. 255.
    Verruijt A (1965) Discussion. In: Proceedings, sixth international conference on soil mechanics and foundation engineering, vol 3, Montreal, pp 401–402Google Scholar
  256. 256.
    Verruijt A (1969) Elastic storage of aquifers. In: DeWiest RJM (ed) Flow through porous media. Academic, New York, pp 331–376Google Scholar
  257. 257.
    Vito RP, Dixon SA (2003) Blood vessel constitutive models—1995–2002. Ann Rev Biomed Eng 5:413–439CrossRefGoogle Scholar
  258. 258.
    Voight B (1968) Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial anelastic strain tensor in drill cores. Felsmech und Ing 6:201–215Google Scholar
  259. 259.
    Warpinski NR, Teufel LW (1989) A viscoelastic constitutive model for determining in-situ stress magnitudes from anelastic strain recovery of core. SPE Prod Eng 4(3):274–279Google Scholar
  260. 260.
    Warpinski NR, Teufel LW (1989) Author’s reply to Discussion of “A viscoelastic constitutive model for determining in-situ stress magnitudes from anelastic strain recovery of core”. SPE Prod Eng 4(3):287–289Google Scholar
  261. 261.
    Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360CrossRefGoogle Scholar
  262. 262.
    Wolff RG (1970) Relationship between horizontal strain near a well and reverse water level fluctuation. Water Resour Res 6(6):1721–1728CrossRefGoogle Scholar
  263. 263.
    Wong TF, David C, Zhu WL (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res Solid Earth 102(B2):3009–3025CrossRefGoogle Scholar
  264. 264.
    Wu JZ, Dong RG, Rakheja S, Schopper AW, Smutz WP (2004) A structural fingertip model for simulating of the biomechanics of tactile sensation. Med Eng Phys 26(2):165–175CrossRefGoogle Scholar
  265. 265.
    Yamamoto T, Koning HL, Sellmeijer H, Van Hijum E (1978) On the response of a poro-elastic bed to water waves. J Fluid Mech 87:193–206CrossRefGoogle Scholar
  266. 266.
    Yang J, Jiang GL (2003) Experimental study on properties of pervious concrete pavement materials. Cem Concr Res 33(3):381–386CrossRefGoogle Scholar
  267. 267.
    Yang M, Taber LA, Clark EB (1994) A nonlinear poroelastic model for the trabecular embryonic heart. J Biomech Eng ASME 116(2):213–223CrossRefGoogle Scholar
  268. 268.
    Yerkes RF, Castle RO (1976) Seismicity and faulting attributable to fluid extraction. Eng Geol 10(2–4):151–167CrossRefGoogle Scholar
  269. 269.
    Yew CH (1997) Mechanics of hydraulic fracturing. Gulf Professional Publishing, Houston, 182ppGoogle Scholar
  270. 270.
    Yin L, Elliott DM (2004) A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension. J Biomech 37(6):907–916CrossRefGoogle Scholar
  271. 271.
    Yin S (2013) Numerical analysis of thermal fracturing in subsurface cold water injection by finite element methods. Int J Numer Anal Methods Geomech 37(15):2523–2538CrossRefGoogle Scholar
  272. 272.
    Yin S, Dusseault MB, Rothenburg L (2007) Analytical and numerical analysis of pressure drawdown in a poroelastic reservoir with complete overburden effect considered. Adv Water Resour 30(5):1160–1167CrossRefGoogle Scholar
  273. 273.
    Young A (1913) Tidal phenomena at inland boreholes near Craddock. Trans R Soc South Afr 31:61–106CrossRefGoogle Scholar
  274. 274.
    Zhang DJ, Weinbaum S, Cowin SC (1998) On the calculation of bone pore water pressure due to mechanical loading. Int J Solids Struct 35(34–35):4981–4997zbMATHCrossRefGoogle Scholar
  275. 275.
    Zhao YS, Hu YQ, Wei JP, Yang D (2003) The experimental approach to effective stress law of coal mass by effect of methane. Transp Porous Media 53(3):235–244CrossRefGoogle Scholar
  276. 276.
    Zheng ZQ, Kemeny J, Cook NGW (1989) Analysis of borehole breakouts. J Geophys Res Solid Earth Planets 94(B6):7171–7182CrossRefGoogle Scholar
  277. 277.
    Zhu Z, Toksöz M (2005) Seismoelectric and seismomagnetic measurements in fractured borehole models. Geophysics 70(4):F45–F51CrossRefGoogle Scholar
  278. 278.
    Zoback MD, Moos D, Mastin L, Anderson RN (1985) Well bore breakouts and in situ stress. J Geophys Res 90(B7):5523–5530CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alexander H.-D. Cheng
    • 1
  1. 1.University of MississippiOxfordUSA

Personalised recommendations