Advertisement

Heavy WIMP-Nucleon Scattering Cross Sections

  • Mikhail P. Solon
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The formalism collected in the previous chapters describe a complete set of tools for making robust cross section predictions for heavy WIMPs scattering with nucleons. The formalism for heavy particle lagrangians in Chap.  2 is used in Chap.  3 to construct effective theories at the weak scale describing electroweak symmetric interactions of the WIMP with SM Higgs and gauge bosons. In Chap.  4 we perform the matching between the electroweak symmetric theory and the low-energy theory of quarks and gluons, determining weak-scale coefficients in terms of a few WIMP parameters such as its electroweak charges. The renormalization of the scalar and tensor coefficients, and their mapping to lower energies using renormalization group and effective theory methods are detailed in the previous chapter. In this chapter, we assemble these pieces into a framework for careful analysis of cross section predictions and their perturbative and input uncertainties.

References

  1. 15.
    B. Borasoy, U.-G. Meissner, Ann. Phys. 254, 192–232 (1997)CrossRefADSGoogle Scholar
  2. 20.
    M. Carena, I. Low, N.R. Shah, C.E.M. Wagner, arXiv:1310.2248 [hep-ph]Google Scholar
  3. 25.
    K.G.Chetyrkin, B.A.Kniehl, M.Steinhauser, Nucl.Phys.B 510, 61 (1998)ADSGoogle Scholar
  4. 27.
    C. Cheung, L.J. Hall, D. Pinner, J.T. Ruderman, J. High Energy Phys. 1305, 100 (2013); C. Cheung, D. Sanford, arXiv:1311.5896 [hep-ph]CrossRefADSGoogle Scholar
  5. 28.
    M. Cirelli, N. Fornengo, A. Strumia, Nucl. Phys. B 753, 178 (2006)CrossRefADSGoogle Scholar
  6. 34.
    M. Drees, M.M. Nojiri, Phys. Rev. D47, 4226–4232 (1993); M. Drees, M. Nojiri, Phys. Rev. D48, 3483–3501 (1993)Google Scholar
  7. 37.
    O. Eberhardt, U. Nierste, M. Wiebusch, J. High Energy Phys. 1307, 118 (2013); V. Barger, L.L. Everett, H.E. Logan, G. Shaughnessy, Phys. Rev. D 88, 115003 (2013)CrossRefADSGoogle Scholar
  8. 42.
    R.Essig, Phys.Rev.D 78, 015004 (2008)CrossRefADSGoogle Scholar
  9. 47.
    W. Freeman et al., [MILC Collaboration], Phys. Rev. D 88, 054503 (2013)Google Scholar
  10. 52.
    M. Gong, A. Alexandru, Y. Chen, T. Doi, S.J. Dong, T. Draper, W. Freeman, M. Glatzmaier et al., Phys. Rev. D 88, 014503 (2013)CrossRefADSGoogle Scholar
  11. 59.
    R.J. Hill, M.P. Solon, Phys. Lett. B 707, 539 (2012)CrossRefADSGoogle Scholar
  12. 65.
    J. Hisano, K. Ishiwata, N. Nagata, T. Takesako, J. High Energy Phys. 1107, 005 (2011); J. Hisano, K. Ishiwata, N. Nagata, Phys. Rev. D 87, 035020 (2013)CrossRefADSGoogle Scholar
  13. 73.
    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996); J.L. Feng, Annu. Rev. Nucl. Part. Sci. 63, 351 (2013)CrossRefADSGoogle Scholar
  14. 74.
    P. Junnarkar, A. Walker-Loud, Phys. Rev. D 87, 114510 (2013)CrossRefADSGoogle Scholar
  15. 87.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)CrossRefADSGoogle Scholar
  16. 92.
    M.M. Pavan, I.I. Strakovsky, R.L. Workman, R.A. Arndt, PiN Newsl. 16, 110–115 (2002)Google Scholar
  17. 97.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Phys. Lett. B78, 443 (1978)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mikhail P. Solon
    • 1
  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations