Advertisement

Weak-Scale Matching

  • Mikhail P. Solon
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous chapter we constructed the effective theory for WIMPs interacting with SM degrees of freedom in the electroweak symmetric phase (cf. Sect. 3.1.3), and for the lightest electrically neutral WIMP interacting with n f  = 5 QCD degrees of freedom (cf. Sects. 3.1.4 and 3.4). The few parameters of the high-scale electroweak symmetric theory imply definite predictions for WIMP-nucleon scattering at the low scale, but require matching between these two effective theories. In this chapter, we present formalism necessary to determine weak-scale matching coefficients in the computation of scattering cross sections for putative dark matter candidates interacting with the SM.

References

  1. 12.
    M. Beltran, D. Hooper, E.W. Kolb, Z.A.C. Krusberg, T.M.P. Tait, J. High Energy Phys. 1009, 037 (2010); P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, Phys. Rev. D 85, 056011 (2012)CrossRefADSGoogle Scholar
  2. 20.
    M. Carena, I. Low, N.R. Shah, C.E.M. Wagner, arXiv:1310.2248 [hep-ph]Google Scholar
  3. 25.
    K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Nucl. Phys. B 510, 61 (1998)ADSGoogle Scholar
  4. 28.
    M. Cirelli, N. Fornengo, A. Strumia, Nucl. Phys. B 753, 178 (2006)CrossRefADSGoogle Scholar
  5. 32.
    A. Denner, Fortschr. Phys. 41, 307 (1993)CrossRefGoogle Scholar
  6. 38.
    H. Eberl, M. Kincel, W. Majerotto, Y. Yamada, Phys. Rev. D 64, 115013 (2001); T. Fritzsche, W. Hollik, Eur. Phys. J. C 24, 619 (2002); W. Oller, H. Eberl, W. Majerotto, C. Weber, Eur. Phys. J. C 29, 563 (2003); A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, Phys. Rev. D 85, 075013 (2012)CrossRefADSGoogle Scholar
  7. 42.
    R. Essig, Phys. Rev. D 78, 015004 (2008)CrossRefADSGoogle Scholar
  8. 48.
    M. Freytsis, Z. Ligeti, Phys. Rev. D 83, 115009 (2011)CrossRefADSGoogle Scholar
  9. 53.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait, H.-B. Yu, Phys. Rev. D 82, 116010 (2010)CrossRefADSGoogle Scholar
  10. 59.
    R.J. Hill, M.P. Solon, Phys. Lett. B 707, 539 (2012)CrossRefADSGoogle Scholar
  11. 62.
    R.J. Hill, G. Lee, G. Paz, M.P. Solon, Phys. Rev. D 87, 053017 (2013)CrossRefADSGoogle Scholar
  12. 64.
    J. Hisano, K. Ishiwata, N. Nagata, Phys. Rev. D 82, 115007 (2010)CrossRefADSGoogle Scholar
  13. 65.
    J. Hisano, K. Ishiwata, N. Nagata, T. Takesako, J. High Energy Phys. 1107, 005 (2011); J. Hisano, K. Ishiwata, N. Nagata, Phys. Rev. D 87, 035020 (2013)CrossRefADSGoogle Scholar
  14. 73.
    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996); J.L. Feng, Annu. Rev. Nucl. Part. Sci. 63, 351 (2013)CrossRefADSGoogle Scholar
  15. 78.
    M. Klasen, C.E. Yaguna, J.D. Ruiz-Alvarez, Phys. Rev. D 87, 075025 (2013)CrossRefADSGoogle Scholar
  16. 90.
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Fortschr. Phys. 32, 585 (1984)CrossRefGoogle Scholar
  17. 97.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Phys. Lett. B78, 443 (1978)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mikhail P. Solon
    • 1
  1. 1.University of California, BerkeleyBerkeleyUSA

Personalised recommendations