Skip to main content

Heavy WIMP Effective Theory

  • Chapter
  • First Online:
  • 346 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Observed anomalies in astrophysical systems, ranging from galactic to cosmological in scale, provide compelling evidence for dark matter. Independent and increasingly precise measurements of the cosmic abundance of total matter and of its baryonic component (e.g., from the cosmic microwave background, big bang nucleosynthesis and large-scale structure) have converged on the picture that ∼ 85 % of the matter in the universe cannot be explained by the Standard Model (SM) of particle physics. While evidence from rotation curves of spiral galaxies may suggest modifications to the theory of gravity, lensing measurements indicate gravitational sources in regions with no baryonic matter, favoring the idea of unseen massive clusters. Beyond the gravitational interaction that implies its existence, there is however little known about the particle nature of dark matter. Does it have non-gravitational interactions with Standard Model particles? Is there a single particle, or an intricate structure of multiple particles similar to the Standard Model? Is it a fundamental particle, or a composite object arising from nonperturbative dynamics? What are its mass and spin?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For reviews see [14, 73] and references therein.

  2. 2.

    A subset of recent work in the field may be found in the Snowmass review [31].

  3. 3.

    Results consistent with the naive estimate were obtained in previous works missing the destructive interference [28, 42].

References

  1. G. Aad et al., [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012)

    Google Scholar 

  2. D.S. Akerib et al., [LUX Collaboration], arXiv:1310.8214 [astro-ph.CO]

    Google Scholar 

  3. E. Aprile et al., [XENON100 Collaboration], Phys. Rev. Lett. 109, 181301 (2012)

    Google Scholar 

  4. G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  5. W.E. Caswell, G.P. Lepage, Phys. Lett. B167, 437 (1986)

    Article  ADS  Google Scholar 

  6. S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012)

    Google Scholar 

  7. M. Cirelli, N. Fornengo, A. Strumia, Nucl. Phys. B 753, 178 (2006)

    Article  ADS  Google Scholar 

  8. T. Cohen, M. Lisanti, A. Pierce, T.R. Slatyer, J. Cosmol. Astropart. Phys. 1310, 061 (2013); J. Fan, M. Reece, J. High Energy Phys. 1310, 124 (2013)

    Article  ADS  Google Scholar 

  9. P. Cushman, C. Galbiati, D.N. McKinsey, H. Robertson, T.M.P. Tait, D. Bauer, A. Borgland, B. Cabrera et al., arXiv:1310.8327 [hep-ex]

    Google Scholar 

  10. M. Drees, M.M. Nojiri, Phys. Rev. D47, 4226–4232 (1993); M. Drees, M. Nojiri, Phys. Rev. D48, 3483–3501 (1993)

    Google Scholar 

  11. J.R. Ellis, K.A. Olive, C. Savage, Phys. Rev. D 77, 065026 (2008)

    Article  ADS  Google Scholar 

  12. R. Essig, Phys. Rev. D 78, 015004 (2008)

    Article  ADS  Google Scholar 

  13. Y. Gershtein, M. Luty, M. Narain, L.-T. Wang, D. Whiteson, K. Agashe, L. Apanasevich, G. Artoni et al., arXiv:1311.0299 [hep-ex]

    Google Scholar 

  14. J. Giedt, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 103, 201802 (2009); R. Horsley et al., [QCDSF-UKQCD Collaboration], Phys. Rev. D 85, 034506 (2012); X.-L. Ren, L.S. Geng, J. Martin Camalich, J. Meng, H. Toki, J. High Energy Phys. 12, 073 (2012); M. Engelhardt, Phys. Rev. D 86, 114510 (2012); P.E. Shanahan, A.W. Thomas, R.D. Young, Phys. Rev. D 87, 074503 (2013); H. Ohki et al., [JLQCD Collaboration], Phys. Rev. D 87(3), 034509 (2013); P. Junnarkar, A. Walker-Loud, Phys. Rev. D 87, 114510 (2013)

    Google Scholar 

  15. R.J. Hill, M.P. Solon, Phys. Lett. B 707, 539 (2012)

    Article  ADS  Google Scholar 

  16. R.J. Hill, M.P. Solon, arXiv:1309.4092 [hep-ph]

    Google Scholar 

  17. R.J. Hill, G. Lee, G. Paz, M.P. Solon, Phys. Rev. D 87, 053017 (2013)

    Article  ADS  Google Scholar 

  18. J. Hisano, K. Ishiwata, N. Nagata, T. Takesako, J. High Energy Phys. 1107, 005 (2011); J. Hisano, K. Ishiwata, N. Nagata, Phys. Rev. D 87, 035020 (2013)

    Article  ADS  Google Scholar 

  19. N. Isgur, M.B. Wise, Phys. Lett. B232, 113 (1989); W.E. Caswell, G.P. Lepage, Phys. Lett. B167, 437 (1986); E. Eichten, B.R. Hill, Phys. Lett. B234, 511 (1990)

    Article  ADS  Google Scholar 

  20. G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996); J.L. Feng, Annu. Rev. Nucl. Part. Sci. 63, 351 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solon, M.P. (2016). Heavy WIMP Effective Theory. In: Heavy WIMP Effective Theory. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-25199-8_1

Download citation

Publish with us

Policies and ethics