Eigenoscillations of Coupled Dielectric Resonators

  • Alexander TrubinEmail author
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 53)


In this chapter, the latest results of high Q dielectric structures analysis have been presented, that consist of multiple-unit DR lattices as well as multilayer Dielectric Resonators (DRs).


Dielectric Resonators Coupled oscillations Lattices Coupling coefficients Eigenmode 


  1. 1.
    R.D. Richtmyer, Dielectric resonators. J. Appl. Phys. 10(6), 391–398 (1939)CrossRefGoogle Scholar
  2. 2.
    S.N. Vlasov, About “whispering gallery” resonances in open resonators with dielectric core. Radiotekhnika i elektronika, (3), 572–573 (1967)Google Scholar
  3. 3.
    V.F. Vziatyshev, V.I. Kalinichev, Natural and forced oscillations of open resonance systems based on dielectric disc resonators. Radiofizica 26(4), 475–482 (1983)Google Scholar
  4. 4.
    V.B. Braginskiy, V.S. Ilchenko, Properties of optical dielectric microresonators. Doklady AS USSR 293(6), 1358–1361 (1987)Google Scholar
  5. 5.
    A.Y. Kirichenko, Y.V. Prokopenko, Y.F. Filipov, N. Cherpak, Qasioptical solid-state resonators. Kiev, Naukova dumka (2008)Google Scholar
  6. 6.
    M.E. Ilchenko, A.A. Trubin, Electrodynamics’ of Dielectric Resonators. (Naukova Dumka, Kiev, 2004)Google Scholar
  7. 7.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton, 1995)Google Scholar
  8. 8.
    A.A. Trubin, Resonance oscillations of Open Two-layer Spherical Structures. Bull. Moscow Power Eng. Inst. (48), 33–38 (1984)Google Scholar
  9. 9.
    A.A. Trubin, Perturbation theory analysis of the system coupling dielectric resonators. Bull. National Tech. Univ. Ukraine. Ser. Radiotechnique, 24, 42–45 (1987)Google Scholar
  10. 10.
    A.A. Trubin, Coupling coefficients of the cylindrical dielectric resonators in open space at metal planes occurrence. Bull. National Tech. Uni. Ukraine. Ser. Radiotechnique, 29, 28–36 (1992)Google Scholar
  11. 11.
    A.A. Trubin, Coupling parameters of Spherical dielectric resonators in semi infinite rectangular metal structures. Bull. National Tech. Univ. Ukraine. Ser. Radiotechnique, 29, 18–28 (1992)Google Scholar
  12. 12.
    A.A. Trubin, Natural oscillations of High-Q resonance macrostructures in infrared and optical ranges on the systems with coupled dielectric resonators, In 17th International Crimean Conference on Microwave and Telecommunication Technology, pp. 473–476 (2007)Google Scholar
  13. 13.
    A.A. Trubin, The coupled resonances of multiple dielectric resonator structures in metal waveguides, in 18th International Crimean Conference on “Microwave and Telecommunication Technology”, pp. 482–484 (2008)Google Scholar
  14. 14.
    A.A. Trubin, The experimental investigation of localized mode in one-dimensional structure of cylindrical dielectric resonators, in Transaction of Second Science Technology Conference “Telecommunication Problems”, Kiev, pp. 333–335 (2008)Google Scholar
  15. 15.
    A.A. Trubin, Electrodynamic properties of Lattices of dielectric resonators infrared wavelength range. Electron. Commun, 4, 27–33 (2010)Google Scholar
  16. 16.
    A.A. Trubin, Lattice modes of cylindrical dielectric resonators in plane waveguide, in 20th International Crimean Conference “Microwave and Telecommunication Technology”, pp. 627–629 (2010)Google Scholar
  17. 17.
    A.A. Trubin, Eigenmodes of dielectric sphere shielded by one-dimensional photonic cristal, in 21th International Crimean Conference “Microwave and Telecommunication Technology”, pp. 632–634 (2011)Google Scholar
  18. 18.
    A.A. Trubin, Natural oscillations of dielectric sphere coated by quasi-one-dimensional photonic crystal. Bull. National Tech. Univ. Ukraine. Ser. Radiotechnique, 47, 19–29 (2011)Google Scholar
  19. 19.
    A.A. Trubin, Resonances of vacancies the multilayer lattices of the cylindrical dielectric resonators, Bull. National Tech. Univ. Ukraine. Ser. Radiotechnique, 49, 13–17 (2012)Google Scholar
  20. 20.
    A.A. Trubin, Scattering of infrared optical pulses on the band-stop filters on ring dielectric micro-resonators. Electron. Commun. 72(1), 26–31 (2013)Google Scholar
  21. 21.
    Handbook of mathematical functions. ed. by M. Abramowitz, I. Stegun (National Bureau of Standards, 1964)Google Scholar
  22. 22.
    A.A. Trubin, Several specified integrals of special functions, EqWorld, 06 Feb 2010.
  23. 23.
    A.A. Trubin, Dielectric sphere in circular waveguide. Bull. National Tech. Univ. Ukraine. Ser. Radiotechnique, 27, 31–34 (1990)Google Scholar
  24. 24.
    A.A. Trubin, Mutual coupling coefficients of the Spherical Dielectric Resonators in Rectangular Waveguide, Bull. of National Technical University of Ukraine. Ser. Radiotechnique, 28, 27–32 (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The National Technical University of UkraineKievUkraine

Personalised recommendations