Advertisement

Introduction

  • Alexander TrubinEmail author
Chapter
  • 617 Downloads
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 53)

Abstract

The lattices of dielectric resonators are novel type of metamaterials distinguished by small dissipative losses as well as convenient conjugation with external structures.

Keywords

Dielectric Resonator External Structure Direct Numerical Solution Electrodynamic Model Cylindrical Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Cheype, C. Serier, M. Thèvenot, T. Monédière, A. Reineix, B. Jecko, An electromagnetic bandgap resonator antenna. IEEE Trans. Antennas Propag. 50(9), 1285–1290 (2002)CrossRefGoogle Scholar
  2. 2.
    E.A. Semouchkina, G.B. Semouchkin, M. Lanagan, C.A. Randall, FDTD study of resonance processes in metamaterials. IEEE Trans MTT 53(4), 1477–1487 (2005)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, A.A. Kishk, A.B. Yakovlev, A.W. Glisson, Analysis and design of wideband dielectric resonator antenna arrays for waveguide-based spatial power combining, in Proceedings of the 36th European Microwave Conference, Sept 2006, Manchester, UK, pp. 642–645Google Scholar
  4. 4.
    T. Ueda, A. Lai, T. Itoh, Negative refraction in a cut-off parallel-plate waveguide loaded with two-dimensional lattice of dielectric resonators, in Proceedings of the 36th European Microwave Conference. Manchester UK, 2006, pp. 435–438Google Scholar
  5. 5.
    T. Ueda, A. Lai, N. Michishita, T. Itoh, Leaky wave radiation from left-handed transmission lines composed of a cut-off parallel-plate waveguide loaded with dielectric resonators, in Proceedings of Asia-Pacific Microwave Conference, 2006, pp. 1075–1079Google Scholar
  6. 6.
    T. Ueda, N. Michishita, T. Itoh, Composite Right/Left Handed Metamaterial Structures Composed of Dielectric Resonators and Parallel Mesh Plates (IEEE, 2007), pp. 1823–1826Google Scholar
  7. 7.
    J. Kim, A. Gopinath, Application of Cubic High Dielectric Resonator Metamaterial to Antennas, Antennas and Propagation Society International Symposium, 2007, pp. 2349–2352Google Scholar
  8. 8.
    T. Ueda, A. Lai, T. Itoh, Demonstration of negative refraction in a cutoff parallel-plate waveguide loaded with 2-D square lattice of dielectric resonators. IEEE Trans. MTT, 55(6), 1280–1287 (2007)Google Scholar
  9. 9.
    L. Peng, L. Ran, H. Chen, H. Zhang, J.A. Kong, T.M. Grzegorczyk, Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. PRL 98, 157403, 157403-1–157403-4 (2007)Google Scholar
  10. 10.
    T. Ueda, N. Michishita, M. Akiyama, T. Itoh, Dielectric-resonator-based composite right/left-handed transmission lines and their application to leaky wave antenna. IEEE Trans. MTT 56(10), 2259–2269 (2008)CrossRefGoogle Scholar
  11. 11.
    X. Cai, R. Zhu, G. Hu, Experimental study for metamaterials based on dielectric resonators and wire frame. Metamaterials 2, 220–226 (2008)CrossRefGoogle Scholar
  12. 12.
    K. Shibuya, K. Takano, N. Matsumoto, K. Izumi, H. Miyazaki, Y. Jimba, M. Hangyo, Terahertz metamaterials composed of TiO2 cube arrays. Pamplona, Metamaterials, 2008, pp. 777–779Google Scholar
  13. 13.
    A. Ahmadi, H. Mosallaei, Physical configuration and performance modeling of all-dielectric metamaterials, Phys. Rev. B 77, 045104, 045104-1–045104-11 (2008)Google Scholar
  14. 14.
    J.F. Wang, S.B. Qu, H. Ma, Y.M. Yang, X. Wu, Wide-angle polarization-independent planar left-handed metamaterials used on dielectric resonators. Prog. Electromagnet. Res. B, 12, 243–258 (2009)Google Scholar
  15. 15.
    J. Wang, S. Qu, H. Ma, J. Hu, Y. Yang, X. Wu, A dielectric resonator-based route to left-handed metamaterials. Prog. Electromagnet. Res. B 13, 133–150 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Ghadarghadr, H. Mosallaei, Dispersion diagram characteristics of periodic array of dielectric and magnetic materials based spheres. IEEE Trans. MTT 57(1), 149–160 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    I.B. Vendik, M.A. Odit, D. Kozlov, All-dielectric metamaterials based on spherical and cubic inclusions. Chapter 6 in Selected Topics in Photonic Crystals and Metamaterials, ed. by A. Andreone (World Scientific, 2011), 550 pGoogle Scholar
  18. 18.
    A.A. Kishk, Directive Yagi-Uda dielectric resonator antennas. Microwave Opt. Technol. Lett. 44(5), 451–453 (2005)Google Scholar
  19. 19.
    J. Li, A. Salandrino, N. Engheta, Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. Phys. Rev. B 79, 195104, 195104-1–1951045-1 (2009)Google Scholar
  20. 20.
    I.S. Maksymov, I. Staude, A.E. Miroshnichenko, Y.S. Kivshar optical Yagi-Uda nanoantennas, ArXiv:1204.0330v1 [physics.optics] 2012, pp. 1–17Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of UkraineThe National TechnicalKievUkraine

Personalised recommendations