Alspach, D.L., Sorenson, H.W.: Nonlinear bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control. 17, 439–448 (1972)
CrossRef
MATH
Google Scholar
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking. IEEE Trans. Signal Proc. 50(2), 174–188 (2002)
CrossRef
Google Scholar
Bengtsson, T., Snyder, C., Nychka, D.: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108, 8775 (2003)
CrossRef
Google Scholar
Choi, S.C., Wette, R.: Maximum likelihood estimation of the parameters of the gamma distribution and their bias. Technometrics 11, 683–690 (1969)
CrossRef
MATH
Google Scholar
Dovera, L., Rossa, E.D.: Multimodal ensemble kalman filtering using Gaussian mixture models. Comput. Geosci. 15, 307–323 (2011)
CrossRef
MATH
Google Scholar
Dzeroski, S., Zenko, B.: Is combining classifiers better than selecting the best one? Mach. Learni. 54(3), 255–273 (2004). Morgan Kaufmann
CrossRef
MATH
Google Scholar
Evensen, G.: The ensemble kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)
CrossRef
Google Scholar
Frei, M., Kunsch, H.R.: Mixture ensemble kalman filters. Comput. Stat. Data Anal. 58, 127–138 (2013)
MathSciNet
CrossRef
MATH
Google Scholar
Gama, J., Brazdil, P.: Cascade generalization. Mach. Learn. 41(3), 315–343 (2000)
CrossRef
MATH
Google Scholar
Gelb, A.: Applied Optimal Estimation. The MIT Press, Cambridge (1974)
Google Scholar
Hoteit, I., Pham, D.T., Triantafyllou, G., Korres, G.: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev. 136, 317–334 (2008)
CrossRef
Google Scholar
Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
CrossRef
Google Scholar
McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley, Hoboken (2008)
CrossRef
MATH
Google Scholar
Tagade, P.M., Ravela, S.: A quadratic information measure for data assimilation. In: American Control Conference 2014, Portland, USA (2014)
Google Scholar
Ravela, S., Emanuel, K., McLaughlin, D.: Data assimilation by field alignment. Phys. D 230, 127–145 (2007)
MathSciNet
CrossRef
MATH
Google Scholar
Ravela, S., McLaughlin, D.: Fast ensemble smoothing. Ocean Dyn. 57, 123–134 (2007)
CrossRef
Google Scholar
Ravela, S.: Spatial inference for coherent geophysical fluids by appearance and geometry. In: Winter Conference on Applications of Computer Vision (2014)
Google Scholar
Smith, K.W.: Cluster ensemble kalman filter. Tellus 59, 749–757 (2007)
CrossRef
Google Scholar
Sondergaard, T., Lermusiaux, P.F.J.: Data assimilation with Gaussian mixture models using dynamically orthogonal field equations. Part 1. Theory and scheme. Mon. Wea. Rev. 141, 1737–1760 (2013)
CrossRef
Google Scholar
Tagade, P., Seybold, H., Ravela, S.: Mixture ensembles for data assimilation in dynamic data-driven environmental systems. In: Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, Queensland, Australia, pp. 1266–1276, 10–12 June 2014
Google Scholar
David, H.W.: Stacked generalization. Neural Netw. 5, 241–259 (1992)
CrossRef
Google Scholar